Skip to main content

Mapping the Distribution of Fluids in the Crust and Lithospheric Mantle Utilizing Geophysical Methods

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

Geophysical imaging provides a unique perspective on metasomatism, because it allows the present day fluid distribution in the Earth’s crust and upper mantle to be mapped. This is in contrast to geological studies that investigate mid-crustal rocks have been exhumed and fluids associated with metasomatism are absent. The primary geophysical methods that can be used are (a) electromagnetic methods that image electrical resistivity and (b) seismic methods that can measure the seismic velocity and related quantities such as Poisson’s ratio and seismic anisotropy. For studies of depths in excess of a few kilometres, the most effective electromagnetic method is magnetotellurics (MT) which uses natural electromagnetic signals as an energy source. The electrical resistivity of crustal rocks is sensitive to the quantity, salinity and degree of interconnection of aqueous fluids. Partial melt and hydrogen diffusion can also cause low electrical resistivity. The effects of fluid and/or water on seismic observables are assessed by rock and mineral physics studies. These studies show that the presence of water generally reduces the seismic velocities of rocks and minerals. The water can be present as a fluid, in hydrous minerals, or as hydrogen point defects in nominally anhydrous minerals. Water can further modify seismic properties such as the Poisson’s ratio, the quality factor, and anisotropy. A variety of seismic analysis methods are employed to measure these effects in situ in the crust and lithospheric mantle and include seismic tomography, seismic reflection, passive-source converted and scattered wave imaging, and shear-wave splitting analysis. A combination of magnetotelluric and seismic data has proven an effective tool to study the fluid distribution in zones of active tectonics such as the Cascadia subduction zone. In this location fluids can be detected as they diffuse upwards from the subducting slab and hydrate the mantle wedge. In a continent-continent collision, such as the Tibetan Plateau, a pervasive zone of partial melting and aqueous fluids was detected at mid-crustal depths over a significant part of the Tibetan Plateau. These geophysical methods have also been used to study past metasomatism ancient plate boundaries preserved in Archean and Proterozoic aged lithosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abers GA (2005) Seismic low-velocity layer at the top of subducting slabs beneath volcanic arcs: observations, predictions, and systematics. Phys Earth Planet Inter 149:7–29

    Google Scholar 

  • Abers GA, MacKenzie LS, Rondenay S, Zhang Z, Wech AG, Creager KC (2009) Imaging the source region of Cascadia tremor and intermediate-depth earthquakes. Geology 37:1119–1122. doi:10.1130/G30143A.1

    Google Scholar 

  • Aizawa Y, Barnhoorn A, Faul UH, Gerald JDF, Jackson I, Kovács I (2008) Seismic properties of Anita Bay dunite: an exploratory study of the influence of water. J Petrol 49(4):841–855. doi:10.1093/petrology/egn007

    Google Scholar 

  • Albarède F (1998) The growth of continental crust. Tectonophysics 296:1–14

    Google Scholar 

  • Ammon CJ, Randall GE, Zandt G (1990) On the non-uniqueness of receiver function inversions. J Geophys Res 95:15303–15319

    Google Scholar 

  • Aprea CM, Unsworth MJ, Booker JR (1998) Resistivity structure of the Olympic mountains and Puget Lowlands. Geophys Res Lett 25:109–112

    Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Pet Eng 146:54–62

    Google Scholar 

  • Audet P, Bostock MG, Christensen NI, Peacock SM (2009) Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457:76–78. doi:10.1038/nature07650

    Google Scholar 

  • Aulbach S, Pearson NJ, O’Reilly SY, Doyle BJ (2007) Origins of xenolithic eclogites and pyroxenites from the central Slave Craton, Canada. J Petrol 48(10):1843–1873. doi:10.1093/petrology/egm041

    Google Scholar 

  • Austrheim H, Erambert M, Engvik AK (1997) Processing of crust in the root of the Caledonian continental collision zone: the role of eclogitization. Tectonophysics 273:129–153

    Google Scholar 

  • Auzende AL, Pellenq RJM, Devouard B, Baronnet A, Grauby O (2006) Atomistic calculations of structural and elastic properties of serpentine minerals: the case of lizardite. Phys Chem Miner 33:266–275. doi:10.1007/s00269-006-0078-x

    Google Scholar 

  • Babuška V, Cara M (1991) Seismic anisotropy in the earth. Kluwer, Dodrecht, 217pp

    Google Scholar 

  • Bach W, Früh-Green G (2010) Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6:173–178

    Google Scholar 

  • Bank CG, Bostock MG, Ellis R, Cassidy J (2000) A reconnaissance teleseismic study of the upper mantle and transition zone beneath the Archean Slave Craton in Northwest Canada. Tectonophysics 319(3):151–166

    Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen BH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Google Scholar 

  • Bercovici D, Karato S (2003) Whole mantle convection and the transition-zone water filter. Nature 425:39–44

    Google Scholar 

  • Berryman JG (1995) Mixture theories for rock properties. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physics constants, vol 3, AGU reference shelf. AGU, Washington, DC, pp 205–228

    Google Scholar 

  • Berryman JG (2007) Seismic waves in rocks with fluids and fractures. Geophys J Int 171:954–974. doi:10.1111/j.1365-246X.2007.03563.x

    Google Scholar 

  • Bertrand EA (2010) MT study of the Taiwan arc-continent collision, Ph.D. thesis, University of Alberta, Edmonton

    Google Scholar 

  • Bertrand EA, Unsworth MJ, Chiang CW, Chen CS, Chen CC, Wu F, Turkoglu E, Hsu HK, Hill G (2009) Magnetotelluric studies of the arc-continent collision in Central Taiwan. Geology 37:711–714

    Google Scholar 

  • Bezacier L, Reynard B, Bass JD, Sanchez-Valle C, de Moortèle BV (2010a) Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth Planet Sci Lett 289:198–208. doi:10.1016/j/epsl.2009.11.009

    Google Scholar 

  • Bezacier L, Reynard B, Bass JD, Wang J, Mainprice D (2010b) Elasticity of glaucophane, seismic velocities and anisotropy of the subducted oceanic crust. Tectonophysics 494:201–210. doi:10.1016/j.tecto.2010.09.011

    Google Scholar 

  • Bina CR, Helffrich GR (1992) Calculation of elastic properties from thermodynamic equation of state principles. Annu Rev Earth Planet Sci 20:527–552

    Google Scholar 

  • Birch F (1960) The velocity of compressional waves in rocks to 10 kilobars, Part 1. J Geophys Res 65(4):1083–1102

    Google Scholar 

  • Blakely RJ, Brocher TM, Wells RE (2005) Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology 33(6):445–448

    Google Scholar 

  • Block D (2001) Water resistivity Atlas of Western Canada Abstract, Paper presented at Rock the Foundation Convention of Canadian Society of Petroleum Geologists, Calgary, 18–22 June 2001

    Google Scholar 

  • Booker JR, Favetto A, Pomposiello MC (2004) Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429:399–403

    Google Scholar 

  • Bostock MG (1997) Anisotropic upper-mantle stratigraphy and architecture of the Slave craton. Nature 390:392–395

    Google Scholar 

  • Bostock MG (1998) Mantle stratigraphy and evolution of the Slave province. J Geophys Res 103(B9):21183–21200

    Google Scholar 

  • Bostock MG, Rondenay S (1999) Migration of scattered teleseismic body waves. Geophys J Int 137:732–746

    Google Scholar 

  • Bostock MG, VanDecar JC (1995) Upper-mantle structure of the northern Cascadia subduction zone. Can J Earth Sci 32:1–12

    Google Scholar 

  • Bostock MG, Hyndman RD, Rondenay S, Peacock SM (2002) An inverted continental moho and serpentinization of the forearc mantle. Nature 417:536–538

    Google Scholar 

  • Bowring SA, Williams IS, Compston W (1989) 3.96 Ga gneisses from the Slave province, Northwest-Territories, Canada. Geology 17(11):971–975

    Google Scholar 

  • Bowring SA, Housh TB, Isachsen CE (1990) The Acasta gneisses: remnant of Earth’s early crust. In: Newsom HE, Jones JH (eds) Origin of the Earth. Oxford University Press, Oxford, UK, pp 319–343

    Google Scholar 

  • Brasse H, Kapinos Li Y, Mutschard SW, Eydam D (2009) Structural electrical aniostropy in the crust at the south-Central Chilean continental margin as inferred from geomagnetic transfer functions. Phys Earth Planet Inter 173:7–16

    Google Scholar 

  • Brenan JM, Watson EB (1988) Fluids in the lithosphere, 2. Experimental constraints on CO2 transport in dunite and quartzite at elevated P-T conditions with implications for mantle and crustal decarbonation processes. Earth Planet Sci Lett 91:141–158

    Google Scholar 

  • Brenders AJ, Pratt RG (2007) Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model. Geophys J Int 168:133–151. doi:10.1111/j.1365-246X.2006.03,156.x

    Google Scholar 

  • Brocher T, Parsons T, Trehu AM, Snelson CM, Fisher MA (2003) Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin. Geology 31(3):267–270

    Google Scholar 

  • Brown LD, Zhao W, Nelson KD, Hauck M, Alsdorf D, Ross A, Cogan M, Clark M, Liu X, Che J (1996) Bright spots, structure and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science 274:1688–1690

    Google Scholar 

  • Brown JR, Beroza GC, Ide S, Ohta K, Shelly DR, Schwartz SY, Rabbel W, Thorwart M, Kao H (2009) Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones. Geophys Res Lett 36:L19306. doi:10.1029/2009GL040027

    Google Scholar 

  • Brudzinski MR, Thurber CH, Hacker BR, Engdahl ER (2007) Global prevalence of double Benioff zones. Science 316:1472–1474. doi:10.1126/science.1139204

    Google Scholar 

  • Calvert AJ (1996) Seismic reflection constraints on imbrication and underplating of the northern Cascadia convergent margin. Can J Earth Sci 33:1294–1307

    Google Scholar 

  • Calvert AJ (2004) Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone. Nature 428:163–167. doi:10.1038/nature02372

    Google Scholar 

  • Calvert AJ, Clowes RM (1990) Deep, high-amplitude reflections from a major shear zone above the subducting Juan de Fuca plate. Geology 18:1091–1094

    Google Scholar 

  • Calvert AJ, Sawyer EW, Davis WJ, Ludden JN (1995) Archaean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature 375:670–673

    Google Scholar 

  • Cammarano F, Romanowicz B (2008) Radial profiles of seismic attenuation in the upper mantle based on physical models. Geophys J Int 175:116–134. doi:10.1111/j.1365-246X.2008.03863.x

    Google Scholar 

  • Cassidy JF, Bostock MG (1996) Shear-wave splitting above the subducting Juan de Fuca plate. Geophys Res Lett 23:941–944

    Google Scholar 

  • Chen CW, Rondenay S, Weeraratne D, Snyder DB (2007) New constraints on the upper mantle structure of the slave craton from rayleigh wave inversion. Geophys Res Lett 34:L10301. doi:10.1029/2007GL029535

    Google Scholar 

  • Chen CW, Rondenay S, Evans RL, Snyder DB (2009) Geophysical detection of relict metasomatism from an Archean (ca 3.5 Ga) subduction zone. Science 326:1089–1091. doi:10.1126/science.1178477

    Google Scholar 

  • Christensen NI (1966) Elasticity of ultrabasic rocks. J Geophys Res 71(24):5921–5931

    Google Scholar 

  • Christensen NI (1984) Pore pressure and oceanic crustal seismic structure. Geophys J R Astr Soc 79:411–423

    Google Scholar 

  • Christensen NI (1989) Reflective and seismic properties of the deep continental crust. J Geophys Res 94:17793–17804

    Google Scholar 

  • Christensen NI (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101:3139–3156

    Google Scholar 

  • Christensen NI (2004) Serpentinites, peridotites, and seismology. Int Geol Rev 46:795–816

    Google Scholar 

  • Clowes RM, Brandon MT, Green AG, Yorath CJ, Sutherland Brown A, Kanasewich ER, Spencer C (1987) Lithoprobe-southern Vancouver Island: cenozoic subduction complex imaged by deep seismic reflections. Can J Earth Sci 24:31–51

    Google Scholar 

  • Crampin S, Booth DC (1985) Shear-wave polarizations near the North Anatolian Fault – II. Interpretation in terms of crack-induced anisotropy. Geophys J R Astr Soc 83:75–92

    Google Scholar 

  • Currie CA, Cassidy JF, Hyndman RD, Bostock MG (2004) Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton. Geophys J Int 157:341–353. doi:10.1111/j.1365-246X.2004.02175.x

    Google Scholar 

  • de Wit M, Roehring C, Hart RJ, Armstrong RA, de Ronde CEJ, Green RWE, Tredoux M, Peberdy E, Hart RA (1992) Formation of an Archaean continent. Nature 357:553–562

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time-scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194

    Google Scholar 

  • Dueker KG, Sheehan AF (1997) Mantle discontinuity structure from midpoint stacks of converted p to s waves across the Yellowstone hotspot track. J Geophys Res 102:8313–8327

    Google Scholar 

  • Dunn RA, Toomey DR (2001) Crack-induced seismic anisotropy in the oceanic crust across the East Pacific rise (9°30′N). Earth Planet Sci Lett 189:9–17

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356

    Google Scholar 

  • Eisel M, Haak V (1999) Macro-anisotropy of the electrical conductivity of the crust: a magnetotelluric study of the German continental deep drilling site (KTB). Geophys J Int 136:109–122

    Google Scholar 

  • Ellis DV, Singer JM (2008) Well logging for Earth scientists, 2nd edn. Springer, Berlin. ISBN 978-1-4020-3738-2

    Google Scholar 

  • Evans RL, Chave AD, Booker JR (2002) On the importance of offshore data for magnetotelluric studies of ocean-continent subduction systems. Geophys Res Lett 29(9):1302. doi:10.1029/2001GL013960

    Google Scholar 

  • Faul UH, Gerald JDF, Jackson I (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications. J Geophys Res 109:B06202. doi:10.1029/2003JB002407

    Google Scholar 

  • Flueh ER, Fisher MA, Bialas J, Childs JR, Klaeschen D, Kukowski N, Parsons T, Scholl DW, ten Brink U, Tréhu AM, Vidal N (1998) New seismic images of the Cascadia subduction zone from cruise SO108 – ORWELL. Tectonophysics 293:69–84

    Google Scholar 

  • Fouch MJ, Rondenay S (2006) Seismic anisotropy beneath stable continental interiors. Phys Earth Planet In 158:292–320

    Google Scholar 

  • Frisillo AL, Barsch GR (1972) Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature. J Geophys Res 77(32):6360–6384

    Google Scholar 

  • Gaillard F (2004) Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth Planet Sci Lett 218:215–228

    Google Scholar 

  • Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu YS (2002) Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett 198:307–322

    Google Scholar 

  • Gatzemeier A, Moorkamp M (2004) 3D modelling of electrical anisotropy from electromagnetic array data: hypothesis testing for different upper mantle conduction mechanisms. Phys Earth Planet Inter 149:225–242

    Google Scholar 

  • Gibert F, Guillaume D, Laporte D (1998) Importance of fluid immiscibility in the H2O- NaCl-CO2 system and selective CO2 entrapment in granulites: experimental phase diagram at 5–7 kbar, 900°C and wetting textures. Eur J Mineral 10:1109–1123

    Google Scholar 

  • Glover P, Hole MJ, Pous J (2000) A modified Archie’s Law for two conducting phases. Earth Planet Sci Lett 180:369–383

    Google Scholar 

  • Green HW, Houston H (1995) The mechanics of deep earthquakes. Annu Rev Earth Planet Sci 23:169–213

    Google Scholar 

  • Green AG, Clowes RM, Yorath CJ, Spencer C, Kanasewich ER, Brandon MT, Sutherland Brown A (1986) Seismic reflection imaging of the subducting Juan de Fuca plate. Nature 319:210–213

    Google Scholar 

  • Gribb TT, Cooper RF (2000) The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine. Geophys Res Lett 27(15):2341–2344

    Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89

    Google Scholar 

  • Hacker BR (2008) H2O subduction beneath arcs. Geochem Geophys Geosyst 9. doi:10.1029/2007GC001707

  • Hacker BR, Abers GA (2004) Subduction factory 3. An excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem Geophys Geosyst 5:Q01005. doi:10.1029/2003GC000614

    Google Scholar 

  • Hacker B, Abers G, Peacock S (2003a) Subduction factory 1: theoretical mineralogy, density, seismic wave-speeds, and H2O content. J Geophys Res 108(B1):2029. doi:10.1029/2001JB001127

    Google Scholar 

  • Hacker BR, Peacock SM, Abers GA, Holloway SD (2003b) Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res 108(B1):2030. doi:10.1029/2001JB001129

    Google Scholar 

  • Hammond WC, Humphreys ED (2000a) Upper mantle seismic wave attenuation: effects of realistic partial melt distribution. J Geophys Res 105:10987–10999

    Google Scholar 

  • Hammond WC, Humphreys ED (2000b) Upper mantle seismic wave velocity: effects of realistic partial melt geometries. J Geophys Res 105:10975–10986

    Google Scholar 

  • Hasalová P, Schulmann K, Lexa O, Štípská P, Hrouda F, Ulrich S, Haloda J, Týcová P (2008) Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss: a new model based on quantitative microstructural analysis. J Metamorph Geol 26:29–53

    Google Scholar 

  • Heaman LM, Kjarsgaard RA, Creaser RA, Cookenboo HO, Kretschmar U (1997) Multiple episodes of kimberlite magmatism in the Slave province, North America. In: Lithoprobe report vol 56, Lithoprobe Secretariat, Vancouver, pp 14–17

    Google Scholar 

  • Heise W, Pous J (2003) Anomalous phases exceeding 90o in magnetotellurics: anisotropic model studies and a field example. Geophys J Int 155:308–318

    Google Scholar 

  • Helffrich GR (1996) Subducted lithospheric slab velocity structure: observations and mineralogical inferences. In: Bebout G, Scholl D, Kirby S, Platt J (eds) Subduction top to bottom, vol 96, AGU geophysical monograph. AGU, Washington, DC, pp 215–222

    Google Scholar 

  • Helmstaedt H, Schulze DJ (1989) Southern African kimberlites and their mantle sample: implications for Archean tectonic and lithosphere evolution. In: Ross J (ed) Kimberlites and related rocks, vol 1, Their composition, occurrence, origin, and emplacement. Blackwell, Carlton, pp 358–368

    Google Scholar 

  • Hilairet N, Daniel I, Reynard B (2006) Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones. Geophys Res Lett 33:L02302. doi:10.1029/2005GL024728

    Google Scholar 

  • Holness MB (1992) Equilibrium dihedral angles in the system quartz-CO2–H2O-NaCl at 800°C and 1–15 kbar: the effects of pressure and fluid composition on the permeability of quartzites. Earth Planet Sci Lett 114:171–184

    Google Scholar 

  • Holness MB (1993) Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: the control of adsorbed H2O on the permeability of quartzites. Earth Planet Sci Lett 117:363–377

    Google Scholar 

  • Holness MB (2006) Melt-solid dihedral angles of common minerals in natural rocks. J Petrol 47(4):791–800

    Google Scholar 

  • Hyndman RD (1988) Dipping seismic reflectors, electrically conductive zones, and trapped water in the crust over a subducting plate. J Geophys Res 93:13391–13405

    Google Scholar 

  • Hyndman RD, Klemperer SL (1989) Lower-crustal porosity from electrical measurements and inferences about composition from seismic velocities. Geophys Res Lett 16(3):255–258

    Google Scholar 

  • Hyndman RD, Peacock SM (2003) Serpentinization of the forearc mantle. Earth Planet Sci Lett 212:417–432

    Google Scholar 

  • Hyndman RD, Shearer PM (1989) Water in the lower continental crust: modelling magnetotelluric and seismic reflection results. Geophys J Int 98:343–365

    Google Scholar 

  • Hyndman RD, Wang K (1993) Thermal constraints on the zone of major thrust earthquake failure: the Cascadia subduction zone. J Geophys Res 98:2039–2060

    Google Scholar 

  • Ito K (1990) Effects of H2O on elastic velocities in ultrabasic rocks at 900°C under 1 GPa. Phys Earth Planet Inter 61:260–268

    Google Scholar 

  • Jackson I, Paterson MS, Gerald JDF (1992) Seismic wave dispersion and attenuation in Åheim dunite: an experimental study. Geophys J Int 108:517–534

    Google Scholar 

  • Jackson JA, Austrheim H, McKenzie D, Priestley K (2004) Metastability, mechanical strength, and the support of mountain belts. Geology 32(7):625–628

    Google Scholar 

  • Jodicke H, Jording A, Ferrari L, Arzate J, Mezger K, Rupke L (2006) Fluid release from the subducted Cocos Plate and partial melting of the crust deduced from magnetotelluric studies in Southern Mexico: implications for the generation of volcanism and subduction dynamics. J Geophys Res 111:B08102. doi:10.1029/2005JB003739

    Google Scholar 

  • Jones AG, Ferguson IJ (2001) The electric Moho. Nature 409:331–333

    Google Scholar 

  • Jones AG, Ferguson IJ, Chave AD, Evans RL, McNeice GW (2001) Electric lithosphere of the Slave craton. Geology 29(5):423–426

    Google Scholar 

  • Jordan TH (1978) Composition and development of the continental tectosphere. Nature 274:544–548

    Google Scholar 

  • Jung H, Karato S (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463

    Google Scholar 

  • Kamiya S, Kobayashi Y (2000) Seismological evidence for the existence of serpentinized wedge mantle. Geophys Res Lett 27(6):819–822

    Google Scholar 

  • Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273

    Google Scholar 

  • Karato S (1995) Effects of water on seismic wave velocities in the upper mantle. Proc Jpn Acad 71:61–66

    Google Scholar 

  • Karato S (2003) Mapping water content in the upper mantle. In: Eiler JM (ed) Inside the subduction factory, vol 138, AGU geophysical monograph. AGU, Washington, DC, pp 135–152

    Google Scholar 

  • Karato S (2006) Remote sensing of hydrogen in Earth’s mantle. Rev Mineral Geochem 62:343–375. doi:10.2138/rmg.2006.62.15

    Google Scholar 

  • Karato S, Jung H (1998) Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet Sci Lett 157:193–207

    Google Scholar 

  • Karato S, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag 83(3):401–414. doi:10.1080/0141861021000025829

    Google Scholar 

  • Katayama I, Hirauchi K, Michibayashi K, Ando J (2009) Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature 461:1114–1117. doi:10.1038/nature08513

    Google Scholar 

  • Kellett RL, Mareschal M, Kurtz RD (1992) A model of lower crustal electrical anisotropy for the Pontiac Subprovince of the Canadian shield. Geophys J Int 111:141–150

    Google Scholar 

  • Kern H, Liu B, Popp T (1997) Relation between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibolite. J Geophys Res 102:3051–3065

    Google Scholar 

  • Kirby S, Engdahl ER, Denlinger R (1996) Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. In: Bebout G, Scholl D, Kirby S, Platt J (eds) Subduction top to bottom, vol 96, AGU geophysical monograph. AGU, Washington, DC, pp 195–214

    Google Scholar 

  • Kono Y, Ishikawa M, Arima M (2007) Effect of H2O released by dehydration of serpentine and chlorite on compressional wave velocities of peridotites at 1 GPa and up to 1000°C. Phys Earth Planet Inter 161:215–223. doi:10.1016/j.pepi.2007.02.005

    Google Scholar 

  • Kumazawa M, Anderson OL (1969) Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite. J Geophys Res 74(25):5961–5972

    Google Scholar 

  • Kurtz RD, Delaurier JM, Gupta JC (1986) A magnetotelluric sounding across Vancouver Island detects the subducting Juan-de-Fuca plate. Nature 321:596–599

    Google Scholar 

  • Kurtz RD, Delaurier JM, Gupta JC (1990) The electrical-conductivity distribution beneath Vancouver Island – a region of active plate subduction. J Geophys Res 95:10929–10946

    Google Scholar 

  • Langston CA (1977) Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic p and s waves. Bull Seismol Soc Am 67(3):713–724

    Google Scholar 

  • Langston CA (1979) Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J Geophys Res 84:4749–4762

    Google Scholar 

  • Leaver DS, Mooney WD, Kohler WM (1984) A seismic refraction study of the Oregon Cascades. J Geophys Res 89:3121–3134

    Google Scholar 

  • Lee CTA (2003) Compositional variations of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle. J Geophys Res 108:2441. doi:10.1029/2003JB002413

    Google Scholar 

  • Lenardic A, Moresi L, Mühlhaus H (2000) The role of mobile belts for the longevity of deep cratonic lithosphere: the crumple zone model. Geophys Res Lett 27(8):1235–1238

    Google Scholar 

  • Lenardic A, Moresi LN, Mühlhaus H (2003) Longevity and stabilty of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J Geophys Res 108(B6):2303. doi:10.1029/2002JB001859

    Google Scholar 

  • Levander A, Niu F, Lee CTA, Cheng X (2006) Imag(in)ing the continental lithosphere. Tectonophysics 416:167–185. doi:10.1016/j/tecto.2005.11.018

    Google Scholar 

  • Lewis C, Ray D, Chiu KK (2007) Primary geologic sources of arsenic in the Chianan plain (blackfoot disease area) and the Lanyang plain of Taiwan. Int Geol Rev 49:947–961

    Google Scholar 

  • Li S, Unsworth MJ, Booker JR, Wei W, Tan H, Jones AG (2003) Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophys J Int 153:289–304

    Google Scholar 

  • Long MD, Silver PG (2008) The subduction zone flow field from seismic anisotropy: a global view. Science 319:315–318. doi:10.1126/science.1150809

    Google Scholar 

  • Ludden J, Hubert C (1986) Geologic evolution of the late Archean Abitibi greenstone belt of Canada. Geology 14:707–711

    Google Scholar 

  • Mainprice D, Ildefonse B (2009) Seismic anisotropy of subduction zone minerals – contribution of hydrous phases. In: Lallemand S, Funiciello F (eds) Subduction zone geodynamics. Springer, Berlin/Heidelberg, pp 63–84

    Google Scholar 

  • Mainprice D, Le Page Y, Rodgers J, Jouanna P (2008) Ab initio elastic properties of talc from 0 to 12 GPa: interpretation of seismic velocities at mantle pressures and prediction of auxetic behaviour at low pressure. Earth Planet Sci Lett 274:327–338. doi:10.1016/j.epsl.2008.07.047

    Google Scholar 

  • Mamaus J, Laporte D, Schiano P (2004) Dihedral angle measurements and infiltration property of SiO2 rich melts in mantle peridotite assemblages. Contrib Mineral Petrol 148:1–12

    Google Scholar 

  • Mareschal M, Kellett RL, Kurtz RD, Ludden JN, Ji S, Bailey RC (1995) Archaean cratonic roots, mantle shear zones and deep electrical anisotropy. Nature 375:134–137

    Google Scholar 

  • Matthews DH (1986) Seismic reflections from the lower crust around Britain. In: Dawson JB, Carswell DA, Hall J, Wedepohl KH (eds) The nature of the lower continental crust, vol 24, Special publication. Geological Society, London, pp 11–24

    Google Scholar 

  • Meju MA (2000) Geoelectric investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach. J Appl Geophys 44:115–150

    Google Scholar 

  • Mercier JP, Bostock MG, Audet P, Gaherty JB, Garnero EJ, Revenaugh J (2008) The teleseismic signature of fossil subduction: Northwestern Canada. J Geophys Res 113:B04308. doi:10.1029/2007JB005127

    Google Scholar 

  • Miller KC, Keller GR, Gridley JM, Luetgert JH, Mooney WD, Thybo H (1997) Crustal structure along the west flank of the Cascades, western Washington. J Geophys Res 102:17857–17873

    Google Scholar 

  • Minster JB, Anderson DL (1981) A model of dislocation-controlled rheology for the mantle. Philos Trans R Soc Lond A 299:319–356

    Google Scholar 

  • Moorkamp M, Jones AG, Eaton DW (2007) Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: are seismic velocities and electrical conductivities compatible? Geophys Res Lett 34:L16311. doi:10.1029/2007GL030519

    Google Scholar 

  • Moorkamp M, Jones AG, Fishwick S (2010) Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data. J Geophys Res 115:B04318. doi:10.1029/2009JB006369

    Google Scholar 

  • Murphy WF (1985) Sonic and ultrasonic velocities: theory versus experiment. Geophys Res Lett 12(2):85–88

    Google Scholar 

  • Nelson KD, Zhao W, Brown LD, Kuo J, Che J, Liu X, Klemperer SL, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nablek J, Leshou C, Tan H, Wei W, Jones AG, Booker JR, Unsworth MJ, Kidd WSF, Hauck M, Alsdorf D, Ross A, Cogan M, Wu C, Sandvol E, Edwards M (1996) Partially molten Middle Crust Beneath Southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1686

    Google Scholar 

  • Nesbitt B (1993) Electrical resistivities of crustal fluids. J Geophys Res 98:4301–4310

    Google Scholar 

  • Nicholson T, Bostock M, Cassidy J (2005) New constraints on subduction zone structure in northern Cascadia. Geophys J Int 161(3):849–859

    Google Scholar 

  • Nolet G (2008) A breviary of seismic tomography. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • O’Connell RJ, Budiansky B (1974) Seismic velocities in dry and saturated cracked solids. J Geophys Res 79(35):5412–5426

    Google Scholar 

  • O’Connell RJ, Budiansky B (1977) Viscoelastic properties of fluid-saturated cracked solids. J Geophys Res 82(36):5719–5735

    Google Scholar 

  • O’Neill C, Jellinek AM, Lenardic A (2007) Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth Planet Sci Lett 261:20–32

    Google Scholar 

  • Obara K (2002) Nonvolcanic deep tremor associated with subduction in Southwest Japan. Science 296:1679–1681

    Google Scholar 

  • Obara K, Hirose H, Yamamizu F, Kasahara K (2004) Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys Res Lett 23:L23602. doi:10.1029/2004GL020848

    Google Scholar 

  • Park J, Yuan H, Levin V (2004) Subduction zone anisotropy beneath Corvallis, Oregon: a serpentinite skid mark of trench-parallel terrane migration? J Geophys Res 109:B10306. doi:10.1029/2003JB002718

    Google Scholar 

  • Parsons T, Blakely RJ, Brocher TM, Christensen NI et al (2005) Crustal structure of the Cascadia fore arc of Washington. USGS professional paper 1661-D, USGS, Denver, 45 pp

    Google Scholar 

  • Partzsch GM, Schilling FR, Arndt J (2000) The influence of partial melting on the electrical behavior of crustal rocks: laboratory examinations, model calculations and geological interpretations. Tectonophysics 317:189–203

    Google Scholar 

  • Payero JS, Kostoglodov V, Shapiro N, Mikumo T, Iglesias A, Perez-Campos X, Clayton RW (2008) Nonvolcanic tremor observed in the Mexican subduction zone. Geophys Res Lett 35:L07305. doi:10.1029/2007GL032877

    Google Scholar 

  • Peterson CL, Christensen DH (2009) Possible relationship between nonvolcanic tremor and the 1998–2001 slow slip event, south central Alaska. J Geophys Res 114:B06302. doi:10.1029/2008JB006096

    Google Scholar 

  • Pozgay SH, Wiens DA, Conder JA, Shiobara H, Sugioka H (2009) Seismic attenuation tomography of the Mariana subduction system: implications for thermal structure, volatile distribution, and slow spreading dynamics. Geochem Geophys Geosyst 10(4):Q04X05. doi:10.1029/2008GC002313

    Google Scholar 

  • Preston LA, Creager KC, Crosson RS, Brocher TM, Tréhu AM (2003) Intraslab earthquakes: dehydration of the Cascadia slab. Science 302:1197–1200

    Google Scholar 

  • Prouteau G, Scaillet B, Pichavant M, Maury R (2001) Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410:197–200

    Google Scholar 

  • Quist AS, Marshall WL (1968) Electrical conductances of aqueous sodium chloride solutions from 0–800°C and at pressures to 4000 Bars. J Phys Chem 72:684–703

    Google Scholar 

  • Ramachandran K, Hyndman RD, Brocher TM (2006) Regional P wave velocity structure of the Northern Cascadia subduction zone. J Geophys Res 111:B12301. doi:10.1029/2005JB004108

    Google Scholar 

  • Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentenization at the Middle America trench. Nature 425:367–373

    Google Scholar 

  • Rasmussen J, Humphreys E (1988) Tomographic image of the Juan de Fuca plate beneath Washington and western Oregon using teleseismic P-wave travel times. Geophys Res Lett 15:1417–1420

    Google Scholar 

  • Reynard B, Hilairet N, Balan E, Lazzeri M (2007) Elasticity of serpentines and extensive serpentinization in subduction zones. Geophys Res Lett 34:L13307. doi:10.1029/2007GL030176

    Google Scholar 

  • Roberts JJ, Tyburczy JA (1999) Partial-melt electrical conductivity: influence of melt composition. J Geophys Res 104:7055–7065

    Google Scholar 

  • Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66:174–187

    Google Scholar 

  • Rogers G, Dragert H (2003) Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300:1942–1943

    Google Scholar 

  • Romanyuk TV, Blakely R, Mooney WD (1998) The Cascadia subduction zone: two contrasting models of lithospheric structure. Phys Chem Earth 23(3):297–301

    Google Scholar 

  • Rondenay S (2009) Upper mantle imaging with array recordings of converted and scattered teleseismic waves. Surv Geophys 30:377–405. doi:10.1007/s10712-009-9071-5

    Google Scholar 

  • Rondenay S, Bostock MG, Hearn TM, White DJ, Ellis RM (2000) Lithospheric assembly and modification of the SE Canadian Shield: Abitibi-Grenville teleseismic experiment. J Geophys Res 105(B6):13735–13754

    Google Scholar 

  • Rondenay S, Bostock MG, Shragge J (2000) Multiparameter two-dimensional inversion of scattered teleseismic body waves, 3, application to the Cascadia 1993 data set. J Geophys Res 106:30795–30808

    Google Scholar 

  • Rondenay S, Abers GA, van Keken PE (2008) Seismic imaging of subduction zone metamorphism. Geology 36:275–278

    Google Scholar 

  • Roth JB, Fouch MJ, James DE, Carlson RW (2008) Three-dimensional seismic velocity structure of the northwestern United States. Geophys Res Lett 35:L15304. doi:10.1029/2008GL034669

    Google Scholar 

  • Rüpke LH, Morgan JP, Hort M, Connolly JA (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34

    Google Scholar 

  • Rychert CA, Rondenay S, Fischer KM (2007) P-to-S and S-to-P imaging of a sharp lithosphere-asthenosphere boundary beneath eastern North America. J Geophys Res 112(B8):B08314. doi:10.1029/2007GL029535

    Google Scholar 

  • Savage MK (1999) Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Rev Geophys 37(1):65–106

    Google Scholar 

  • Schilling FR, Sinogeikin SV, Bass JD (2003) Single-crystal elastic properties of lawsonite and their variation with temperature. Phys Earth Planet Inter 136:107–118. doi:10.1016/S0031-9201(03), 00024-4

    Google Scholar 

  • Schmeling H (1985) Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part I: elasticity and anelasticity. Phys Earth Planet Inter 41:34–57

    Google Scholar 

  • Schulmann K, Martelat JE, Ulrich S, Lexa O, Štípská P, Becker JK (2008) Evolution of microstructure and melt topology in partially molten granitic mylonite: implications for rheology of felsic middle crust. J Geophys Res 113:B10406

    Google Scholar 

  • Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307:1615–1618. doi:10.1126/science.1108339

    Google Scholar 

  • Shelly DR, Beroza GC, Ide S, Nakamula S (2006) Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442:188–191. doi:10.1038/nature04931

    Google Scholar 

  • Silver PG (1996) Seismic anisotropy beneath the continents: probing the depths of geology. Annu Rev Earth Planet Sci 24:385–432

    Google Scholar 

  • Simpson F (2001) Resistance to mantle flow inferred from the electromagnetic strike of the Australian upper mantle. Nature 412:632–635

    Google Scholar 

  • Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Simpson F, Tommasi A (2005) Hydrogen diffusivity and electrical anisotropy of a peridotite mantle. Geophys J Int 160:1092–1102

    Google Scholar 

  • Siripunvaraporn W, Egbert GD, Lenbury Y, Uyeshima M (2005) Three dimensional magnetotelluric inversion: data subspace method. Phys Earth Planet Inter 150:3–14

    Google Scholar 

  • Snyder DB, Bostock MG, Lockhart GD (2003) Two anisotropic layers in the Slave craton. Lithos 71:529–539

    Google Scholar 

  • Snyder DB, Rondenay S, Bostock MG, Lockhart GD (2004) Mapping the mantle lithosphere for diamond potential. Lithos 77:859–872

    Google Scholar 

  • Soyer W, Unsworth M (2006) Deep electrical structure of the northern Cascadia (British Columbia, Canada) subduction zone: implications for the distribution of fluids. Geology 34(1):53–56. doi:10.1130/G21951.1

    Google Scholar 

  • Stachnik J, Abers G, Christensen D (2004) Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone. J Geophys Res 109:B10304. doi:10.1029/2004JB003018

    Google Scholar 

  • Stetsky RM, Brace WF (1973) Electrical conductivity of serpentinized rocks to 6 kilobars. J Geophys Res 78:7614–7621

    Google Scholar 

  • Strack KM, Luschen E, Kotz AW (1990) Long-offset transient electromagnetic (LOTEM) depth soundings applied to crustal studies in the Black Forest and Swabian Alb, Federal Republic of Germany. Geophysics 55:834–842

    Google Scholar 

  • Suetnova EI, Carbonell R, Smithson SB (1994) Bright seismic reflections and fluid movement by porous flow in the lower crust. Earth Planet Sci Lett 126:161–169

    Google Scholar 

  • Takei Y (2002) Effect of pore geometry on VP/VS: from equilibrium geometry to crack. J Geophys Res 107:2043. doi:10.1029/2001JB000522

    Google Scholar 

  • Takei Y, Holtzman BK (2009a) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control models. J Geophys Res 114:B06205. doi:10.1029/2008JB005850

    Google Scholar 

  • Takei Y, Holtzman BK (2009b) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 2. Compositional model for small melt fractions. J Geophys Res 114:B06206. doi:10.1029/2008JB005851

    Google Scholar 

  • Takei Y, Holtzman BK (2009c) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy. J Geophys Res 114:B06207. doi:10.1029/2008JB005852

    Google Scholar 

  • Tape C, Liu Q, Maggi A, Tromp J (2010) Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophys J Int 180:433–462. doi:10.1111/j.1365-246X.2009.04429.x

    Google Scholar 

  • ten Grotenhuis SM, Drury MR, Peach CJ, Spiers CJ (2004) Electrical properties of fine-grained olivine: evidence for grain boundary transport. J Geophys Res 109:B06203. doi:10.1029/2003JB002799

    Google Scholar 

  • ten Grotenhuis SM, Drury MR, Spiers CJ, Peach CJ (2005) Melt distribution in olivine rocks based on electrical conductivity measurements. J Geophys Res 110:B12201. doi:10.1029/2004JB003462

    Google Scholar 

  • Tréhu AM, Asudeh I, Brocher TM, Luetgert JH, Mooney WD, Nabelek JL, Nakamura Y (1994) Crustal architecture of the Cascadia forearc. Science 266:237–243

    Google Scholar 

  • Tullis J, Yund R, Farver J (1996) Deformation enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones. Geology 24:63–66

    Google Scholar 

  • Ucok H, Ershaghi I, Olhoeft G (1980) Electrical resistivity of geothermal brines. J Petrol Technol 32:717–727, June 1980

    Google Scholar 

  • Unsworth MJ (2010) Geophysics 424 class notes at University of Alberta. http://www.ualberta.ca/~unsworth/UA-classes/424/424index.html

  • Unsworth MJ, Jones AG, Wei W, Marquis G, Gokarn S, Spratt J (2005) Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature 438:78–81. doi:10.1038/nature04154

    Google Scholar 

  • Ussher G, Harvey C, Johnstone R, Anderson E (2000) Understanding the resistivities observed in Geothermal systems. In: Proceedings World Geothermal Congress, Kyushu

    Google Scholar 

  • VanDecar JC (1991) Upper-mantle structure of the Cascadia subduction zone from non-linear teleseismic travel-time inversion. Ph.D. thesis, University of Washington, Seattle

    Google Scholar 

  • Vanyan L (2002) A geoelectric model of the Cascadia Subduction zone. Izv Phys Solid Earth 38:816–845

    Google Scholar 

  • Vinnik L (1977) Detection of waves converted from P to SV in the mantle. Phys Earth Planet Inter 15:39–45

    Google Scholar 

  • Vry J, Powell R, Golden KM, Petersen K (2010) The role of exhumation in metamorphic dehydration and fluid production. Nat Geosci 3:31–35

    Google Scholar 

  • Wannamaker PE (1986) Electrical conductivity of water- undersaturated crustal melting. J Geophys Res 91:6321–6327

    Google Scholar 

  • Wannamaker PE (2000) Comment on “The petrologic case for a dry lower crust” by BWD Yardley and JW Valley. J Geophys Res 105(B3):6057–6064

    Google Scholar 

  • Wannamaker PE (2005) Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: fundamental response characteristics and implications for physiochemical state. Surv Geophys 26:733–765

    Google Scholar 

  • Wannamaker PE (2010) Water from stone. Nat Geosci 3:10–11

    Google Scholar 

  • Wannamaker PE, Booker JR, Jones AG, Chave AD, Filloux JH, Waff HS, Law LK (1989) Resistivity cross section through the Juan de Fuca subduction system and its tectonic implications. J Geophys Res 94:14127–14144

    Google Scholar 

  • Wannamaker PE, Jiracek GR, Stodt JA, Caldwell TG, Gonzalez V, McKnight J, Porter AD (2002) Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data. J Geophys Res 107. doi:2001JB000186

  • Wannamaker PE, Caldwell TG, Jiracek GR, Maris V, Hill GJ, Ogawa Y, Bibby HM, Bennie SL, Heise W (2009) Fluid and deformation regime at an advancing subduction system at Marlborough, New Zealand. Nature 460:733–737

    Google Scholar 

  • Watson E, Brenan JM (1987) Fluids in the lithosphere, 1. Experimentally determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties and fluid inclusion formation. Earth Planet Sci Lett 85:497–515

    Google Scholar 

  • Wells RE, Blakely RJ, Weaver CS (2002) Cascadia microplate models and within-slab earthquakes. In: Kirby S,Wang K, Dunlop S (eds) The Cascadia subduction zone and related subduction systems – Seismic structure, intraslab earthquakes and processes, and earthquake hazards, Open-File Report, vol 02–328, US Geological Survey, Menlo Park, pp 17–23

    Google Scholar 

  • Wiens DA, Conder JA, Faul UH (2008) The seismic structure and dynamics of the mantle wedge. Annu Rev Earth Planet Sci 36:421–455

    Google Scholar 

  • Williams Q, Hemley RJ (2001) Hydrogen in the deep earth. Annu Rev Earth Planet Sci 29:365–418

    Google Scholar 

  • Wilson DS (2002) The Juan de Fuca plate and slab: Isochron structure and Cenozoic plate motions. In: Kirby S, Wang K, Dunlop S (eds) The Cascadia subduction zone and related subduction systems – Seismic structure, intraslab earthquakes and processes, and earthquake hazards, Open-File Report, vol 02–328, US Geological Survey, Menlo Park, pp 9–12

    Google Scholar 

  • Winkler KW, Murphy WF (1995) Acoustic velocity and attenuation in porous rocks. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physics constants, vol 3, AGU reference shelf. AGU, Washington, DC, pp 20–34

    Google Scholar 

  • Worthington PF (1993) The uses and abuses of the Archie equations, 1: the formation factor-porosity relationship. J Appl Geophys 30:215–228

    Google Scholar 

  • Worzewski T, Jegen M, Kopp H, Brasse H, Castillo WT, Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone, Nature Geoscience, 4, 108–111, 2010.

    Google Scholar 

  • Xue M, Allen RM (2007) The fate of the Juan de Fuca plate: implications for a Yellowstone plume head. Earth Planet Sci Lett 264:266–276. doi:10.1016/j.epsl.2007.09.047

    Google Scholar 

  • Yardley B, Valley J (1997) The petrologic case for a dry lower crust. J Geophys Res 102:12173–12185

    Google Scholar 

  • Zhao D, Wang K, Rogers GC, Peacock SM (2001) Tomographic image of low P velocity anomalies above slab in northern Cascadia subduction zone. Earth Planet Space 53:285–293

    Google Scholar 

  • Zhu L, Kanamori H (2000) Moho depth variation in southern California from teleseismic receiver functions. J Geophys Res 105:2969–2980

    Google Scholar 

Download references

Acknowledgements

The authors thank Michael Bostock and Nik Christensen for their reviews, and numerous colleagues for discussions on this topic over the year. We also thank the Editors for their great patience in waiting for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martyn Unsworth .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Unsworth, M., Rondenay, S. (2013). Mapping the Distribution of Fluids in the Crust and Lithospheric Mantle Utilizing Geophysical Methods. In: Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28394-9_13

Download citation

Publish with us

Policies and ethics