Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Endomicroscopy is an emerging area encompassing several imaging modalities starting from wide-field imaging, confocal imaging, nonlinear imaging, optical coherence tomography, and others; it applies several modern technologies spanning from new detectors and sources, fiber optics, integrated micromechanical systems, new fabrication technologies, and biochemical contrasts. Endomicroscopy continuously increases its presence in clinical studies and applications. This chapter will first provide a brief introduction of endomicroscopy and then focus on design requirements and system components. This chapter will also discuss its applications in animal and clinical studies.


Optical Coherence Tomography Numerical Aperture Photonic Crystal Fiber Optical Coherence Tomography System Grin Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank Dr. Mark Pierce and Dr. Michal Pawlowski for a tremendous help, many suggestions, and discussions over the course of work to write this chapter.


  1. 1.
    J. Bailley, The endoscope. Gastrointest. Endosc. 65, 886–893 (2007)Google Scholar
  2. 2.
    D. Panescu, Emerging Technologies: an imaging pill for gastrointestinal endoscopy. IEEE Eng. Med. Biol. Mag. July/August, 12–14 (2005)Google Scholar
  3. 3.
    M.A. Kara, J.J. Bergman, Autofluorescence imaging and narrow-band imaging for the detection of early neoplasia in patients with Barrett’s esophagus. Endoscopy 38(6), 627–631 (2006)Google Scholar
  4. 4.
    H. Inoue, K. Sasajima, M. Kaga, S. Sugaya, Y. Sato, Y. Wada, M. Inui, H. Satodate, S.E. Kudo, S. Kimura, S. Hamatani, A. Shiokawa, Endoscopic in vivo evaluation of tissue atypia in the esophagus using a newly designed integrated endocytoscope: a pilot trial. Endoscopy 38, 891–895 (2006)Google Scholar
  5. 5.
    R.T. Bryan, L.J. Billingham, D.M.A. Wallace, Narrow-band imaging flexible cystoscopy in the detection of recurrent urothelial cancer of the bladder. BJU Int. 101(6), 702–705 (2008)Google Scholar
  6. 6.
    E.V. Cauberg, D.M. de Bruin, D.J. Faber, T.G. van Leeuwen, J.J.M.C.H. de la Rosette, T.M. de Reijke, A new generation of optical diagnostics for bladder cancer: technology, diagnostic accuracy, and future applications. Eur. Urol. 56, 287–297 (2009)Google Scholar
  7. 7.
    A.L. Clark, A.M. Gillenwater, T.G. Collier, R. Alizadeh-Naderi, A.K. El-Naggar, R.R. Richards-Kortum, Confocal microscopy for real-time detection of oral cavity neoplasia. Clin. Cancer Res. 9, 4714–4721 (2003)Google Scholar
  8. 8.
    F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005)Google Scholar
  9. 9.
    V. Becker, T. Vercauteren, C.H. von Weyhern, C. Prinz, R.M. Schmid, A. Meining, High-resolution miniprobe-based confocal microscopy in combination with video mosaicing. Gastrointest. Endosc. 66(5), 1001–1007 (2007)Google Scholar
  10. 10.
    B.E. Bouma, S.H. Yun, B.J. Vakoc, M.J. Suter, G.J. Tearney, Fourier-domain optical coherence tomography: recent advances toward clinical utility. Curr. Opin. Biotechnol. 20, 111–118 (2009)Google Scholar
  11. 11.
    J. Pawley, Handbook of Biological Confocal Microscopy, 3rd edn. (Springer, New York, 2006)Google Scholar
  12. 12.
    A.L. Polglase, W.J. McLaren, S.A. Skinner, R. Kiesslich, M.F. Neurath, P.M. Delaney, A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract. Gastrointest. Endosc. 62, 686–695 (2005)Google Scholar
  13. 13.
    K.C. Maitland, A.M. Gillenwater, M.D. Williams, A.K. El-Naggar, M.R. Descour, R.R. Richards-Kortum, In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncol. 44, 1059–1066 (2008)Google Scholar
  14. 14.
    H. Bao, J. Allen, R. Pattie, R. Vance, M. Gu, Fast handheld two-photon fluorescence microendoscope with a 475 x 475micron field of view for in vivo imaging. Opt. Lett. 33, 1333–1335 (2008)Google Scholar
  15. 15.
    R.H. Webb, Confocal optical microscopy. Rep. Prog. Phys. 59, 427–471 (1996)Google Scholar
  16. 16.
    W.R. Zipfel, R.N. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003)Google Scholar
  17. 17.
    T.J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, R.R. Richards-Kortum, Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus. J. Biomed. Opt. 15, 026027 (2010)Google Scholar
  18. 18.
    D. Kobat, M.E. Durst, N. Nishimura, A.W. Wong, C.B. Schaffer, C. Xu, Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 17, 13354–13364 (2009)Google Scholar
  19. 19.
    C.M. Brown, P.G. Reinhall, S. Karasawa, E.J. Seibel, Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope. Opt. Eng. 45, 043001 (2006)Google Scholar
  20. 20.
    M.D. Chidley, K.D. Carlson, R.R. Richards-Kortum, M.R. Descour, Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy. Appl. Opt. 45, 2545–2554 (2006)Google Scholar
  21. 21.
    L. Fu, M. Gu, Fibre-optic nonlinear optical microscopy and endoscopy. J. Microsc. 226, 195–206 (2007)Google Scholar
  22. 22.
    P. Kim, M. Puoris’haag, D. Côté, C.P. Lin, S.H. Yun, In vivo confocal and multiphoton microendoscopy. J. Biomed. Opt. 13, 010501 (2008)Google Scholar
  23. 23.
    H.J. Shin, M.C. Pierce, D. Lee, H. Ra, O. Solgaard, R. Richards-Kortum, Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens. Opt. Express 15, 9113–9122 (2007)Google Scholar
  24. 24.
    S.H. Yun, G.J. Tearney, B.J. Vakoc, M. Shishkov, R. Yelin, W.Y.Oh, A. Desjardins, R.C. Chan, D. Yelin, J.A. Evans, I.K. Jang, N.S. Nishioka, J.F. de Boer, B.E. Bouma, Comprehensive volumetric optical microscopy in vivo. Nat, Med. 12, 1429–1433 (2006)Google Scholar
  25. 25.
    G.J. Tearney, S. Waxman, M. Shishkov, B.J. Vakoc, M.J. Suter, M.I. Freilich, A.E. Desjardins, W.Y. Oh, L.A. Bartlett, M. Rosenberg, B.E. Bouma, Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. J. Am. Coll. Cardiol. Img. 1, 752–761 (2008)Google Scholar
  26. 26.
    E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, E. Vicaut, Fibered confocal fluorescence microscopy (Cell-viZioTM) facilitates extended imaging in the field of microcirculation. J. Vasc. Res. 41, 400 (2004)Google Scholar
  27. 27.
    H. Bao, A. Boussioutas, R. Jeremy, S. Russell, M. Gu, Second harmonic generation imaging via nonlinear endomicroscopy. Opt. Express 18, 1255–1260 (2010)Google Scholar
  28. 28.
    C.J. Engelbrecht, R.S. Johnston, E.J. Seibel, F. Helmchen, Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt. Express 16, 5556–5564 (2008)Google Scholar
  29. 29.
    R. Le Harzic, M. Weinigel, I. Riemann, K. König, B. Messerschmidt, Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens. Opt. Express 16, 20588–20596 (2008)Google Scholar
  30. 30.
    M. Lelek, E. Suran, F. Louradour, A. Barthelemy, B. Viellerobe, F. Lacombe, Coherent femtosecond pulse shaping for the optimization of a non-linear micro-endoscope. Opt. Express 15, 10154–10162 (2007)Google Scholar
  31. 31.
    G.J. Tearney, R.H. Webb, B.E. Bouma, Spectrally encoded confocal microscopy. Opt. Lett. 23, 1152–1154 (1998)Google Scholar
  32. 32.
    F & T Fibers 1: Web product resources of F & T Fibers and Technology GmbH: (December 2011)
  33. 33.
    Fujikura 1: Web product resources of Fujikura America Inc.: (April 2011)
  34. 34.
    R.T. Kester, T. Christenson, R. Richards Kortum, T.S. Tkaczyk, Low cost, high performance, self-aligning miniature optical systems. Appl. Opt. 48, 3375–3384 (2009)Google Scholar
  35. 35.
    J.A. Udovich, N.D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, A. F. Gmitro, Spectral background and transmission characteristics of fiber optic imaging bundles. Appl. Opt. 47, 4560–4568 (2008)Google Scholar
  36. 36.
    B.A. Flusberg, E.D. Cocker, W. Piyawattanametha, J.C. Jung, E.L.M. Cheung, M.J. Schnitzer, Fiber-optic fluorescence imaging. Nat. Methods 2, 941–950 (2005)Google Scholar
  37. 37.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991)Google Scholar
  38. 38.
    X. Liu, M.J. Cobb, Y. Chen, M.B. Kimmey, X. Li, Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography. Opt. Lett. 29, 1763–1765 (2004)Google Scholar
  39. 39.
    M.T. Myaing, D.J. MacDonald, X. Li, Fiber-optic scanning two-photon fluorescence endoscope. Opt. Lett. 31, 1076–1078 (2006)Google Scholar
  40. 40.
    L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 3rd edn. (Wiley, New York, 1982)Google Scholar
  41. 41.
    H. Miyajima, K. Murakami, M. Katashiro, MEMS optical scanners for microscopes. IEEE J. Sel. Top. Quantum Electron. 10, 514 (2004)Google Scholar
  42. 42.
    D.L. Dickensheets, G.S. Kino, Micromachined scanning confocal optical microscope. Opt. Lett. 21, 764–766 (1996)Google Scholar
  43. 43.
    D. Lee, O. Solgaard, Two-axis gimbaled microscanner in double SOI layers actuated by self-aligned vertical electrostatic combdrive, in Proceedings of the Solid-State Sensors, Actuators and Microsystems Workshop, pp. 352–355 (2004)Google Scholar
  44. 44.
    A.D. Aguirre, P.R. Herz, Y. Chen, J.G. Fujimoto, W. Piyawattanametha, L. Fan, M.C. Wu, Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En Face imaging. Opt. Express 15, 2445–2453 (2007)Google Scholar
  45. 45.
    J.T.C. Liu, M.J. Mandella, H. Ra, L.K. Wong, O. Solgaard, G.S. Kino, W. Piyawattanametha, C.H. Contag, T.D. Wang, Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner. Opt. Lett. 32, 256–258 (2007)Google Scholar
  46. 46.
    W. Jung, D.T. McCormick, J. Zhang, L. Wang, N.C. Tien, Z. Chen, Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror. Appl. Phys. Lett. 88, 163901 (2006)Google Scholar
  47. 47.
    M. Kanai, US Patent 7,914,447: Confocal scanning endoscope system and image display area adjustment method thereof (2011)Google Scholar
  48. 48.
    A.R. Rouse, A. Kano, J.A. Udovich, S.M. Kroto, A.F. Gmitro, Design and demonstration of a miniature catheter for a confocal microendoscope. Appl. Opt. 43, 5763–5771 (2004)Google Scholar
  49. 49.
    S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH GmbH & Co. KGaA, Weinheim, 2003)Google Scholar
  50. 50.
    J.C. Jung, A.D. Mehta, E. Aksay, R. Stepnoski, M.J. Schnitzer, In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004)Google Scholar
  51. 51.
    R.S. Pillai, D. Lorenser, D.D. Sampson, Deep-tissue access with confocal fluorescence microendoscopy through hypodermic needles. Opt. Express 19, 7213–7221 (2011)Google Scholar
  52. 52.
    R.P.J. Barretto, B. Messerschmidt, M.J. Schnitzer, In vivo fluorescence imaging with high resolution microlenses. Nat. Methods 6, 511–515 (2009)Google Scholar
  53. 53.
    J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner, Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun. 188, 267–273 (2001)Google Scholar
  54. 54.
    Y. Wu, Y. Leng, J. Xi, X. Li, Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues. Opt. Express 17, 7907–7915 (2009)Google Scholar
  55. 55.
    W. Göbel, J.N.D. Kerr, A. Nimmerjahn, F. Helmchen, Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29, 2521–2523 (2004)Google Scholar
  56. 56.
    Grintech 1: product specification for High-NA Endomicroscopic Imaging Objective for Fluorescence Microscopy: GT-MO-080-018-488 and GT-MO-080-0415-488 (October 2011)
  57. 57.
    Grintech 2: product specification for High-NA Endomicroscopic Imaging Objective for 2-Photon Microscopy: GT-MO-080-018-810 and GT-MO-080-0415-810 (October 2011)
  58. 58.
    M. Bass, Editor-in-chief, Handbook of Optics, vol. 1, 3rd edn. (McGraw Hill, New York, 2010)Google Scholar
  59. 59.
    C. Liang, K.B. Sung, R.R. Richards-Kortum, M.R. Descour, Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Appl. Opt. 41, 4603–4610 (2002)Google Scholar
  60. 60.
    M. Kyrish, U. Utzinger, M.R. Descour, B.K. Baggett, T.S. Tkaczyk, Ultra-slim plastic endomicroscope objective for non-linear microscopy. Opt. Express 19, 7603–7615 (2011)Google Scholar
  61. 61.
    R.S. Kwon, D.G. Adler, B. Chand, J.D. Conway, D.L. Diehl, S.V. Kantsevoy, P. Mamula, S.A. Rodriguez, R.J. Shah, L.M.W.K. Song, W.M. Tierney, High-resolution and high-magnification endoscopes. Gastrointest. Endosc. 69, 399–407 (2009)Google Scholar
  62. 62.
    R.S. Kwon, L. Wong Kee Song, D.G. Adler, J.D. Conway, D.L. Diehl, F.A. Farraye, S.V. Kantsevoy, V. Kaul, S.R. Kethu, P. Mamula, M.C. Pedrosa, S.A. Rodriguez, W.M. Tierney, Endocytoscopy. Gastrointest. Endosc. 70, 610–613 (2009)Google Scholar
  63. 63.
    H. Pohl, M. Koch, A. Khalifa, I.S. Papanikolaou, K. Scheiner, B. Wiedenmann, T. Rösch, Evaluation of endocytoscopy in the surveillance of patients with Barrett’s esophagus. Endoscopy 39, 492–496 (2007)Google Scholar
  64. 64.
    T. Dromard, V. Ravaine, S. Ravaine, J. Lévêque, N. Sojic, Remote in vivo imaging of human skin corneocytes by means of an optical fiber bundle. Rev. Sci. Inst. 78, 053709 (2007)Google Scholar
  65. 65.
    T.J. Muldoon, S. Anandasabapathy, D. Maru, R. Richards-Kortum, High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope. Gastrointest. Endosc. 68, 737–744 (2008)Google Scholar
  66. 66.
    T.J. Muldoon, D. Roblyer, M.D. Williams, V.M.T. Stepanek, R. Richards–Kortum, A.M. Gillenwater, Noninvasive imaging of oral neoplasia with a high-resolution microendoscope. Head Neck 34(3), 305–312 (2012). doi: 10.1002/hed.21735. Epub 2011 Mar 16.Google Scholar
  67. 67.
    M.C. Pierce, D. Yu, R. Richards-Kortum, High-resolution fiber-optic microendoscopy for in situ cellular imaging. JOVE 47, e2306 (2011)Google Scholar
  68. 68.
    M.C. Pierce, P.M. Vila, A. Polydorides, R. Richards-Kortum, S. Anandasabapathy, Low-cost endomicroscopy in the esophagus and colon. Am. J. Gastroenterol. 106, 1722–1724 (2011)Google Scholar
  69. 69.
    W. Zhong, J.P. Celli, I. Rizvi, Z. Mai, B.Q. Spring, S.H. Yun, T. Hasan, In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. Br. J. Cancer 101, 2015–2022 (2009)Google Scholar
  70. 70.
    N. Mufti, Y. Kong, J.D. Cirillo, K.C. Maitland, Fiber optic microendoscopy for preclinical study of bacterial infection dynamics. Biomed. Opt. Express 2, 1121–1134 (2011)Google Scholar
  71. 71.
    K.J. Rosbach, D. Shin, T.J. Muldoon, M.A. Quraishi, L.P. Middleton, K.K. Hunt, F. Meric-Bernstam, T.K. Yu, R.R. Richards-Kortum, W. Yang, High-resolution fiber optic microscopy with fluorescent contrast enhancement for the identification of axillary lymph node metastases in breast cancer: a pilot study. Biomed. Opt. Express 1, 911–922 (2010)Google Scholar
  72. 72.
    B.A. Flusberg, A. Nimmerjahn, E.D. Cocker, E.A. Mukamel, R.P.J. Barretto, T.H. Ko, L.D. Burns, J.C. Jung, M.J. Schnitzer, High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Methods 5, 935–938 (2008)Google Scholar
  73. 73.
    A.F. Gmitro, D Aziz, Confocal microscopy through a fiber-optic imaging bundle. Opt. Lett. 18, 565–567 (1993)Google Scholar
  74. 74.
    K.B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues. IEEE Trans. Biomed. Eng. 49, 1168–1172 (2002)Google Scholar
  75. 75.
    K.B. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, M. Descour, Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo. Opt. Express 11, 3171 (2003)Google Scholar
  76. 76.
    F. Jean, G. Bourg-Heckly, B. Viellerobe, Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis. Opt. Express 15, 4008–4017 (2007)Google Scholar
  77. 77.
    K.B. Dunbar, M.I. Canto, “Confocal endomicroscopy.” Tech. Gastrointest. Endosc. 12, 90–99 (2010)Google Scholar
  78. 78.
    L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, Charlotte Cavé, G. Bourg-Heckly, In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am. J. Respir. Crit. Care Med. 175, 22–31 (2007)Google Scholar
  79. 79.
    M.B. Wallace, P. Sharma, C. Lightdale, et al., Preliminary accuracy and interobserver agreement for the detection of intraepithelial neoplasia in Barrett’s esophagus with probe-based confocal laser endomicroscopy. Gastrointest. Endosc. 72, 19–24 (2010)Google Scholar
  80. 80.
    P.M. Lane, S. Lam, A. McWilliams, J.C. leRiche, M.W. Anderson, C.E. MacAulay, Confocal fluorescence microendoscopy of bronchial epithelium. J. Biomed. Opt. 14, 024008 (2009)Google Scholar
  81. 81.
    Y.S. Sabharwal, A.R. Rouse, L. Donaldson, M.F. Hopkins, A.F. Gmitro, Slit-scanning confocal microendoscope for high-resolution in vivo imaging. Appl. Opt. 38, 7133 (1999)Google Scholar
  82. 82.
    A.R. Rouse, A.F. Gmitro, Multispectral imaging with a confocal microendoscope. Opt. Lett. 25, 1708–1710 (2000)Google Scholar
  83. 83.
    A.A. Tanbakuchi, J.A. Udovich, A.R. Rouse, K.D. Hatch, A.F. Gmitro, In vivo imaging of ovarian tissue using a novel confocal microlaparoscope. Am. J. Obstet. Gynecol. 202, 90.e1–9 (2010)Google Scholar
  84. 84.
    M.R. Harris, Scanning microscope with a miniature head. U.K. patent GB 2340332 B (2001)Google Scholar
  85. 85.
    P.S. Thong, M. Olivo, K. Kho, W. Zheng, K. Mancer, M. Harris, K. Soo, Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity. J. Biomed. Opt. 12, 014007 (2007)Google Scholar
  86. 86.
    S. Astner, S. Dietterle, N. Otberg, H. Rowert-Huber, E. Stockfleth, J. Lademann, Clinical applicability of in vivo fluorescence confocal microscopy for noninvasive diagnosis and therapeutic monitoring of nonmelanoma skin cancer. J. Biomed. Opt. 13, 014003 (2008)Google Scholar
  87. 87.
    J. Tan, M.A. Quinn, J.M. Pyman, P.M. Delaney, W.J. McLaren, Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy. BJOG 116, 1663–1670 (2009)Google Scholar
  88. 88.
    M. Goetz, R. Kiesslich, Advances of endomicroscopy for gastrointestinal physiology and diseases. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G797–806 (2010)Google Scholar
  89. 89.
    K.B. Dunbar, P. Okolo, E. Montgomery, Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: a prospective, randomized, double-blinded, controlled, crossover trial. Gastrointest. Endosc. 70, 645–54 (2009)Google Scholar
  90. 90.
    E.J. Seibel, Q.Y.J. Smithwick, Unique features of optical scanning, single fiber endoscopy. Lasers Surg. Med. 30, 177 (2002)Google Scholar
  91. 91.
    D. Yelin, I. Rizvi, W.M. White, J.T. Motz, T. Hasan, B.E. Bouma, G.J. Tearney, Three-dimensional miniature endoscopy. Nature 443, 765 (2006)Google Scholar
  92. 92.
    D. Kang, M.J. Suter, C. Boudoux, H. Yoo, P.S. Yachimski, W.P. Puricelli, N.S. Nishioka, M. Mino-Kenudson, G.Y. Lauwers, B.E. Bouma, G.J. Tearney, Comprehensive imaging of gastroesophageal biopsy samples by spectrally encoded confocal microscopy. Gastrointest. Endosc. 71, 35–43 (2010)Google Scholar
  93. 93.
    D. Kang, H. Yoo, P. Jillella, B.E. Bouma, G.J. Tearney, Comprehensive volumetric confocal microscopy with adaptive focusing. Biomed. Opt. Express 2, 1412–1422 (2011)Google Scholar
  94. 94.
    J.C. Jung, M.J. Schnitzer, Multiphoton endoscopy. Opt. Lett. 28, 902–904 (2003)Google Scholar
  95. 95.
    S. Chia, C. Yu, C. Lin, N. Cheng, T. Liu, M. Chan, I. Chen, C. Sun, Miniaturized video-rate epi-third-harmonic-generation fiber-microscope. Opt. Express 18, 17382–17391 (2010)Google Scholar
  96. 96.
    F. Légaré, C.L. Evans, F. Ganikhanov, X.S. Xie, Towards CARS endoscopy. Opt. Express 14, 4427–4432 (2006)Google Scholar
  97. 97.
    M. Balu, G. Liu, Z. Chen, B.J. Tromberg, E.O. Potma, Fiber delivered probe for efficient CARS imaging of tissues. Opt. Express 18, 2380–2388 (2010)Google Scholar
  98. 98.
    S. Murugkar, B. Smith, P. Srivastava, A. Moica, M. Naji, C. Brideau, P. K. Stys, H. Anis, Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source. Opt. Express 18, 23796–23804 (2010)Google Scholar
  99. 99.
    B.G. Saar, R.S. Johnston, C.W. Freudiger, X.S. Xie, E.J. Seibel, Coherent Raman scanning fiber endoscopy. Opt. Lett. 36, 2396–2398 (2011)Google Scholar
  100. 100.
    B.E. Bouma, G.J. Tearney, Clinical imaging with optical coherence tomography. Acad. Radiol. 9, 942–953 (2002)Google Scholar
  101. 101.
    G.J. Tearney, S.A. Boppart, B.E. Bouma, M.E. Brezinski, N.J. Weissman, J.F. Southern, J.G. Fujimoto, Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt. Lett. 21, 543–545 (1996)Google Scholar
  102. 102.
    B.E. Bouma, G.J. Tearney, Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography. Opt. Lett. 24, 531–533 (1999)Google Scholar
  103. 103.
    A.M. Rollins, R. Ung-arunyawee, A. Chak, R.C.K. Wong, K. Kobayashi, M.V. Sivak, J.A. Izatt, Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design. Opt. Lett. 24, 1358–1360 (1999)Google Scholar
  104. 104.
    B.E. Bouma, G.J. Tearney, C.C. Compton, N.S. Nishioka, High resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. Gastrointest. Endosc. 51, 467–474 (2000)Google Scholar
  105. 105.
    J.M.V. Sivak, K. Kobayashi, J.A. Izatt, A.M. Rollins, R. Ung-runyawee, A. Chak, R.C.K. Wong, G.A. Isenberg, J. Willis, High-resolution endoscopic imaging of the GI tract using optical coherence tomography. Gastrointest. Endosc. 51, 474–479 (2000)Google Scholar
  106. 106.
    I.K. Jang, G.J. Tearney, B.M. MacNeill, M. Takano, F. Moselewski, N. Iftimia, M. Shishkov, S.L. Houser, H.T. Aretz, E.F. Halpern, et al., In vivo characterization of coronary atherosclerotic plaque using optical coherence tomography. Circulation 111, 1551–1555 (2005)Google Scholar
  107. 107.
    G. Guagliumi, V. Sirbu, Optical coherence tomography: high resolution intravascular imaging to evaluate vascular healing after coronary stenting. Catheter Cardiovasc. Interv. 72, 237–247 (2008)Google Scholar
  108. 108.
    M.J. Suter, B.J. Vakoc, P.S. Yachimski, M. Shishkov, G.Y. Lauwers, M. Mino-Kenudson, B.E. Bouma, N.S. Nishioka, G.J. Tearney, Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging. Gastrointest. Endosc. 68, 745–753 (2008)Google Scholar
  109. 109.
    D.C. Adler, C. Zhou, T.H. Tsai, et al., Three-dimensional optical coherence tomography of Barrett’s esophagus and buried glands beneath neosquamous epithelium following radiofrequency ablation. Endoscopy 41, 773–776 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of BioengineeringRice UniversityHoustonUSA

Personalised recommendations