Skip to main content

Endomicroscopy

  • Chapter
  • First Online:
  • 2903 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Endomicroscopy is an emerging area encompassing several imaging modalities starting from wide-field imaging, confocal imaging, nonlinear imaging, optical coherence tomography, and others; it applies several modern technologies spanning from new detectors and sources, fiber optics, integrated micromechanical systems, new fabrication technologies, and biochemical contrasts. Endomicroscopy continuously increases its presence in clinical studies and applications. This chapter will first provide a brief introduction of endomicroscopy and then focus on design requirements and system components. This chapter will also discuss its applications in animal and clinical studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Bailley, The endoscope. Gastrointest. Endosc. 65, 886–893 (2007)

    Google Scholar 

  2. D. Panescu, Emerging Technologies: an imaging pill for gastrointestinal endoscopy. IEEE Eng. Med. Biol. Mag. July/August, 12–14 (2005)

    Google Scholar 

  3. M.A. Kara, J.J. Bergman, Autofluorescence imaging and narrow-band imaging for the detection of early neoplasia in patients with Barrett’s esophagus. Endoscopy 38(6), 627–631 (2006)

    Google Scholar 

  4. H. Inoue, K. Sasajima, M. Kaga, S. Sugaya, Y. Sato, Y. Wada, M. Inui, H. Satodate, S.E. Kudo, S. Kimura, S. Hamatani, A. Shiokawa, Endoscopic in vivo evaluation of tissue atypia in the esophagus using a newly designed integrated endocytoscope: a pilot trial. Endoscopy 38, 891–895 (2006)

    Google Scholar 

  5. R.T. Bryan, L.J. Billingham, D.M.A. Wallace, Narrow-band imaging flexible cystoscopy in the detection of recurrent urothelial cancer of the bladder. BJU Int. 101(6), 702–705 (2008)

    Google Scholar 

  6. E.V. Cauberg, D.M. de Bruin, D.J. Faber, T.G. van Leeuwen, J.J.M.C.H. de la Rosette, T.M. de Reijke, A new generation of optical diagnostics for bladder cancer: technology, diagnostic accuracy, and future applications. Eur. Urol. 56, 287–297 (2009)

    Google Scholar 

  7. A.L. Clark, A.M. Gillenwater, T.G. Collier, R. Alizadeh-Naderi, A.K. El-Naggar, R.R. Richards-Kortum, Confocal microscopy for real-time detection of oral cavity neoplasia. Clin. Cancer Res. 9, 4714–4721 (2003)

    Google Scholar 

  8. F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005)

    Google Scholar 

  9. V. Becker, T. Vercauteren, C.H. von Weyhern, C. Prinz, R.M. Schmid, A. Meining, High-resolution miniprobe-based confocal microscopy in combination with video mosaicing. Gastrointest. Endosc. 66(5), 1001–1007 (2007)

    Google Scholar 

  10. B.E. Bouma, S.H. Yun, B.J. Vakoc, M.J. Suter, G.J. Tearney, Fourier-domain optical coherence tomography: recent advances toward clinical utility. Curr. Opin. Biotechnol. 20, 111–118 (2009)

    Google Scholar 

  11. J. Pawley, Handbook of Biological Confocal Microscopy, 3rd edn. (Springer, New York, 2006)

    Google Scholar 

  12. A.L. Polglase, W.J. McLaren, S.A. Skinner, R. Kiesslich, M.F. Neurath, P.M. Delaney, A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract. Gastrointest. Endosc. 62, 686–695 (2005)

    Google Scholar 

  13. K.C. Maitland, A.M. Gillenwater, M.D. Williams, A.K. El-Naggar, M.R. Descour, R.R. Richards-Kortum, In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncol. 44, 1059–1066 (2008)

    Google Scholar 

  14. H. Bao, J. Allen, R. Pattie, R. Vance, M. Gu, Fast handheld two-photon fluorescence microendoscope with a 475 x 475micron field of view for in vivo imaging. Opt. Lett. 33, 1333–1335 (2008)

    Google Scholar 

  15. R.H. Webb, Confocal optical microscopy. Rep. Prog. Phys. 59, 427–471 (1996)

    Google Scholar 

  16. W.R. Zipfel, R.N. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003)

    Google Scholar 

  17. T.J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, R.R. Richards-Kortum, Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus. J. Biomed. Opt. 15, 026027 (2010)

    Google Scholar 

  18. D. Kobat, M.E. Durst, N. Nishimura, A.W. Wong, C.B. Schaffer, C. Xu, Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 17, 13354–13364 (2009)

    Google Scholar 

  19. C.M. Brown, P.G. Reinhall, S. Karasawa, E.J. Seibel, Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope. Opt. Eng. 45, 043001 (2006)

    Google Scholar 

  20. M.D. Chidley, K.D. Carlson, R.R. Richards-Kortum, M.R. Descour, Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy. Appl. Opt. 45, 2545–2554 (2006)

    Google Scholar 

  21. L. Fu, M. Gu, Fibre-optic nonlinear optical microscopy and endoscopy. J. Microsc. 226, 195–206 (2007)

    Google Scholar 

  22. P. Kim, M. Puoris’haag, D. Côté, C.P. Lin, S.H. Yun, In vivo confocal and multiphoton microendoscopy. J. Biomed. Opt. 13, 010501 (2008)

    Google Scholar 

  23. H.J. Shin, M.C. Pierce, D. Lee, H. Ra, O. Solgaard, R. Richards-Kortum, Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens. Opt. Express 15, 9113–9122 (2007)

    Google Scholar 

  24. S.H. Yun, G.J. Tearney, B.J. Vakoc, M. Shishkov, R. Yelin, W.Y.Oh, A. Desjardins, R.C. Chan, D. Yelin, J.A. Evans, I.K. Jang, N.S. Nishioka, J.F. de Boer, B.E. Bouma, Comprehensive volumetric optical microscopy in vivo. Nat, Med. 12, 1429–1433 (2006)

    Google Scholar 

  25. G.J. Tearney, S. Waxman, M. Shishkov, B.J. Vakoc, M.J. Suter, M.I. Freilich, A.E. Desjardins, W.Y. Oh, L.A. Bartlett, M. Rosenberg, B.E. Bouma, Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. J. Am. Coll. Cardiol. Img. 1, 752–761 (2008)

    Google Scholar 

  26. E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, E. Vicaut, Fibered confocal fluorescence microscopy (Cell-viZioTM) facilitates extended imaging in the field of microcirculation. J. Vasc. Res. 41, 400 (2004)

    Google Scholar 

  27. H. Bao, A. Boussioutas, R. Jeremy, S. Russell, M. Gu, Second harmonic generation imaging via nonlinear endomicroscopy. Opt. Express 18, 1255–1260 (2010)

    Google Scholar 

  28. C.J. Engelbrecht, R.S. Johnston, E.J. Seibel, F. Helmchen, Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt. Express 16, 5556–5564 (2008)

    Google Scholar 

  29. R. Le Harzic, M. Weinigel, I. Riemann, K. König, B. Messerschmidt, Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens. Opt. Express 16, 20588–20596 (2008)

    Google Scholar 

  30. M. Lelek, E. Suran, F. Louradour, A. Barthelemy, B. Viellerobe, F. Lacombe, Coherent femtosecond pulse shaping for the optimization of a non-linear micro-endoscope. Opt. Express 15, 10154–10162 (2007)

    Google Scholar 

  31. G.J. Tearney, R.H. Webb, B.E. Bouma, Spectrally encoded confocal microscopy. Opt. Lett. 23, 1152–1154 (1998)

    Google Scholar 

  32. F & T Fibers 1: Web product resources of F & T Fibers and Technology GmbH: http://www.fibersandtechnology.com/ (December 2011)

  33. Fujikura 1: Web product resources of Fujikura America Inc.: http://www.fujikura.com/ (April 2011)

  34. R.T. Kester, T. Christenson, R. Richards Kortum, T.S. Tkaczyk, Low cost, high performance, self-aligning miniature optical systems. Appl. Opt. 48, 3375–3384 (2009)

    Google Scholar 

  35. J.A. Udovich, N.D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, A. F. Gmitro, Spectral background and transmission characteristics of fiber optic imaging bundles. Appl. Opt. 47, 4560–4568 (2008)

    Google Scholar 

  36. B.A. Flusberg, E.D. Cocker, W. Piyawattanametha, J.C. Jung, E.L.M. Cheung, M.J. Schnitzer, Fiber-optic fluorescence imaging. Nat. Methods 2, 941–950 (2005)

    Google Scholar 

  37. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991)

    Google Scholar 

  38. X. Liu, M.J. Cobb, Y. Chen, M.B. Kimmey, X. Li, Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography. Opt. Lett. 29, 1763–1765 (2004)

    Google Scholar 

  39. M.T. Myaing, D.J. MacDonald, X. Li, Fiber-optic scanning two-photon fluorescence endoscope. Opt. Lett. 31, 1076–1078 (2006)

    Google Scholar 

  40. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 3rd edn. (Wiley, New York, 1982)

    Google Scholar 

  41. H. Miyajima, K. Murakami, M. Katashiro, MEMS optical scanners for microscopes. IEEE J. Sel. Top. Quantum Electron. 10, 514 (2004)

    Google Scholar 

  42. D.L. Dickensheets, G.S. Kino, Micromachined scanning confocal optical microscope. Opt. Lett. 21, 764–766 (1996)

    Google Scholar 

  43. D. Lee, O. Solgaard, Two-axis gimbaled microscanner in double SOI layers actuated by self-aligned vertical electrostatic combdrive, in Proceedings of the Solid-State Sensors, Actuators and Microsystems Workshop, pp. 352–355 (2004)

    Google Scholar 

  44. A.D. Aguirre, P.R. Herz, Y. Chen, J.G. Fujimoto, W. Piyawattanametha, L. Fan, M.C. Wu, Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En Face imaging. Opt. Express 15, 2445–2453 (2007)

    Google Scholar 

  45. J.T.C. Liu, M.J. Mandella, H. Ra, L.K. Wong, O. Solgaard, G.S. Kino, W. Piyawattanametha, C.H. Contag, T.D. Wang, Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner. Opt. Lett. 32, 256–258 (2007)

    Google Scholar 

  46. W. Jung, D.T. McCormick, J. Zhang, L. Wang, N.C. Tien, Z. Chen, Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror. Appl. Phys. Lett. 88, 163901 (2006)

    Google Scholar 

  47. M. Kanai, US Patent 7,914,447: Confocal scanning endoscope system and image display area adjustment method thereof (2011)

    Google Scholar 

  48. A.R. Rouse, A. Kano, J.A. Udovich, S.M. Kroto, A.F. Gmitro, Design and demonstration of a miniature catheter for a confocal microendoscope. Appl. Opt. 43, 5763–5771 (2004)

    Google Scholar 

  49. S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH GmbH & Co. KGaA, Weinheim, 2003)

    Google Scholar 

  50. J.C. Jung, A.D. Mehta, E. Aksay, R. Stepnoski, M.J. Schnitzer, In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004)

    Google Scholar 

  51. R.S. Pillai, D. Lorenser, D.D. Sampson, Deep-tissue access with confocal fluorescence microendoscopy through hypodermic needles. Opt. Express 19, 7213–7221 (2011)

    Google Scholar 

  52. R.P.J. Barretto, B. Messerschmidt, M.J. Schnitzer, In vivo fluorescence imaging with high resolution microlenses. Nat. Methods 6, 511–515 (2009)

    Google Scholar 

  53. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner, Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun. 188, 267–273 (2001)

    Google Scholar 

  54. Y. Wu, Y. Leng, J. Xi, X. Li, Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues. Opt. Express 17, 7907–7915 (2009)

    Google Scholar 

  55. W. Göbel, J.N.D. Kerr, A. Nimmerjahn, F. Helmchen, Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29, 2521–2523 (2004)

    Google Scholar 

  56. Grintech 1: www.grintech.de product specification for High-NA Endomicroscopic Imaging Objective for Fluorescence Microscopy: GT-MO-080-018-488 and GT-MO-080-0415-488 (October 2011)

  57. Grintech 2: www.grintech.de product specification for High-NA Endomicroscopic Imaging Objective for 2-Photon Microscopy: GT-MO-080-018-810 and GT-MO-080-0415-810 (October 2011)

  58. M. Bass, Editor-in-chief, Handbook of Optics, vol. 1, 3rd edn. (McGraw Hill, New York, 2010)

    Google Scholar 

  59. C. Liang, K.B. Sung, R.R. Richards-Kortum, M.R. Descour, Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Appl. Opt. 41, 4603–4610 (2002)

    Google Scholar 

  60. M. Kyrish, U. Utzinger, M.R. Descour, B.K. Baggett, T.S. Tkaczyk, Ultra-slim plastic endomicroscope objective for non-linear microscopy. Opt. Express 19, 7603–7615 (2011)

    Google Scholar 

  61. R.S. Kwon, D.G. Adler, B. Chand, J.D. Conway, D.L. Diehl, S.V. Kantsevoy, P. Mamula, S.A. Rodriguez, R.J. Shah, L.M.W.K. Song, W.M. Tierney, High-resolution and high-magnification endoscopes. Gastrointest. Endosc. 69, 399–407 (2009)

    Google Scholar 

  62. R.S. Kwon, L. Wong Kee Song, D.G. Adler, J.D. Conway, D.L. Diehl, F.A. Farraye, S.V. Kantsevoy, V. Kaul, S.R. Kethu, P. Mamula, M.C. Pedrosa, S.A. Rodriguez, W.M. Tierney, Endocytoscopy. Gastrointest. Endosc. 70, 610–613 (2009)

    Google Scholar 

  63. H. Pohl, M. Koch, A. Khalifa, I.S. Papanikolaou, K. Scheiner, B. Wiedenmann, T. Rösch, Evaluation of endocytoscopy in the surveillance of patients with Barrett’s esophagus. Endoscopy 39, 492–496 (2007)

    Google Scholar 

  64. T. Dromard, V. Ravaine, S. Ravaine, J. Lévêque, N. Sojic, Remote in vivo imaging of human skin corneocytes by means of an optical fiber bundle. Rev. Sci. Inst. 78, 053709 (2007)

    Google Scholar 

  65. T.J. Muldoon, S. Anandasabapathy, D. Maru, R. Richards-Kortum, High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope. Gastrointest. Endosc. 68, 737–744 (2008)

    Google Scholar 

  66. T.J. Muldoon, D. Roblyer, M.D. Williams, V.M.T. Stepanek, R. Richards–Kortum, A.M. Gillenwater, Noninvasive imaging of oral neoplasia with a high-resolution microendoscope. Head Neck 34(3), 305–312 (2012). doi: 10.1002/hed.21735. Epub 2011 Mar 16.

    Google Scholar 

  67. M.C. Pierce, D. Yu, R. Richards-Kortum, High-resolution fiber-optic microendoscopy for in situ cellular imaging. JOVE 47, e2306 (2011)

    Google Scholar 

  68. M.C. Pierce, P.M. Vila, A. Polydorides, R. Richards-Kortum, S. Anandasabapathy, Low-cost endomicroscopy in the esophagus and colon. Am. J. Gastroenterol. 106, 1722–1724 (2011)

    Google Scholar 

  69. W. Zhong, J.P. Celli, I. Rizvi, Z. Mai, B.Q. Spring, S.H. Yun, T. Hasan, In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. Br. J. Cancer 101, 2015–2022 (2009)

    Google Scholar 

  70. N. Mufti, Y. Kong, J.D. Cirillo, K.C. Maitland, Fiber optic microendoscopy for preclinical study of bacterial infection dynamics. Biomed. Opt. Express 2, 1121–1134 (2011)

    Google Scholar 

  71. K.J. Rosbach, D. Shin, T.J. Muldoon, M.A. Quraishi, L.P. Middleton, K.K. Hunt, F. Meric-Bernstam, T.K. Yu, R.R. Richards-Kortum, W. Yang, High-resolution fiber optic microscopy with fluorescent contrast enhancement for the identification of axillary lymph node metastases in breast cancer: a pilot study. Biomed. Opt. Express 1, 911–922 (2010)

    Google Scholar 

  72. B.A. Flusberg, A. Nimmerjahn, E.D. Cocker, E.A. Mukamel, R.P.J. Barretto, T.H. Ko, L.D. Burns, J.C. Jung, M.J. Schnitzer, High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Methods 5, 935–938 (2008)

    Google Scholar 

  73. A.F. Gmitro, D Aziz, Confocal microscopy through a fiber-optic imaging bundle. Opt. Lett. 18, 565–567 (1993)

    Google Scholar 

  74. K.B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues. IEEE Trans. Biomed. Eng. 49, 1168–1172 (2002)

    Google Scholar 

  75. K.B. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, M. Descour, Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo. Opt. Express 11, 3171 (2003)

    Google Scholar 

  76. F. Jean, G. Bourg-Heckly, B. Viellerobe, Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis. Opt. Express 15, 4008–4017 (2007)

    Google Scholar 

  77. K.B. Dunbar, M.I. Canto, “Confocal endomicroscopy.” Tech. Gastrointest. Endosc. 12, 90–99 (2010)

    Google Scholar 

  78. L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, Charlotte Cavé, G. Bourg-Heckly, In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am. J. Respir. Crit. Care Med. 175, 22–31 (2007)

    Google Scholar 

  79. M.B. Wallace, P. Sharma, C. Lightdale, et al., Preliminary accuracy and interobserver agreement for the detection of intraepithelial neoplasia in Barrett’s esophagus with probe-based confocal laser endomicroscopy. Gastrointest. Endosc. 72, 19–24 (2010)

    Google Scholar 

  80. P.M. Lane, S. Lam, A. McWilliams, J.C. leRiche, M.W. Anderson, C.E. MacAulay, Confocal fluorescence microendoscopy of bronchial epithelium. J. Biomed. Opt. 14, 024008 (2009)

    Google Scholar 

  81. Y.S. Sabharwal, A.R. Rouse, L. Donaldson, M.F. Hopkins, A.F. Gmitro, Slit-scanning confocal microendoscope for high-resolution in vivo imaging. Appl. Opt. 38, 7133 (1999)

    Google Scholar 

  82. A.R. Rouse, A.F. Gmitro, Multispectral imaging with a confocal microendoscope. Opt. Lett. 25, 1708–1710 (2000)

    Google Scholar 

  83. A.A. Tanbakuchi, J.A. Udovich, A.R. Rouse, K.D. Hatch, A.F. Gmitro, In vivo imaging of ovarian tissue using a novel confocal microlaparoscope. Am. J. Obstet. Gynecol. 202, 90.e1–9 (2010)

    Google Scholar 

  84. M.R. Harris, Scanning microscope with a miniature head. U.K. patent GB 2340332 B (2001)

    Google Scholar 

  85. P.S. Thong, M. Olivo, K. Kho, W. Zheng, K. Mancer, M. Harris, K. Soo, Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity. J. Biomed. Opt. 12, 014007 (2007)

    Google Scholar 

  86. S. Astner, S. Dietterle, N. Otberg, H. Rowert-Huber, E. Stockfleth, J. Lademann, Clinical applicability of in vivo fluorescence confocal microscopy for noninvasive diagnosis and therapeutic monitoring of nonmelanoma skin cancer. J. Biomed. Opt. 13, 014003 (2008)

    Google Scholar 

  87. J. Tan, M.A. Quinn, J.M. Pyman, P.M. Delaney, W.J. McLaren, Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy. BJOG 116, 1663–1670 (2009)

    Google Scholar 

  88. M. Goetz, R. Kiesslich, Advances of endomicroscopy for gastrointestinal physiology and diseases. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G797–806 (2010)

    Google Scholar 

  89. K.B. Dunbar, P. Okolo, E. Montgomery, Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: a prospective, randomized, double-blinded, controlled, crossover trial. Gastrointest. Endosc. 70, 645–54 (2009)

    Google Scholar 

  90. E.J. Seibel, Q.Y.J. Smithwick, Unique features of optical scanning, single fiber endoscopy. Lasers Surg. Med. 30, 177 (2002)

    Google Scholar 

  91. D. Yelin, I. Rizvi, W.M. White, J.T. Motz, T. Hasan, B.E. Bouma, G.J. Tearney, Three-dimensional miniature endoscopy. Nature 443, 765 (2006)

    Google Scholar 

  92. D. Kang, M.J. Suter, C. Boudoux, H. Yoo, P.S. Yachimski, W.P. Puricelli, N.S. Nishioka, M. Mino-Kenudson, G.Y. Lauwers, B.E. Bouma, G.J. Tearney, Comprehensive imaging of gastroesophageal biopsy samples by spectrally encoded confocal microscopy. Gastrointest. Endosc. 71, 35–43 (2010)

    Google Scholar 

  93. D. Kang, H. Yoo, P. Jillella, B.E. Bouma, G.J. Tearney, Comprehensive volumetric confocal microscopy with adaptive focusing. Biomed. Opt. Express 2, 1412–1422 (2011)

    Google Scholar 

  94. J.C. Jung, M.J. Schnitzer, Multiphoton endoscopy. Opt. Lett. 28, 902–904 (2003)

    Google Scholar 

  95. S. Chia, C. Yu, C. Lin, N. Cheng, T. Liu, M. Chan, I. Chen, C. Sun, Miniaturized video-rate epi-third-harmonic-generation fiber-microscope. Opt. Express 18, 17382–17391 (2010)

    Google Scholar 

  96. F. Légaré, C.L. Evans, F. Ganikhanov, X.S. Xie, Towards CARS endoscopy. Opt. Express 14, 4427–4432 (2006)

    Google Scholar 

  97. M. Balu, G. Liu, Z. Chen, B.J. Tromberg, E.O. Potma, Fiber delivered probe for efficient CARS imaging of tissues. Opt. Express 18, 2380–2388 (2010)

    Google Scholar 

  98. S. Murugkar, B. Smith, P. Srivastava, A. Moica, M. Naji, C. Brideau, P. K. Stys, H. Anis, Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source. Opt. Express 18, 23796–23804 (2010)

    Google Scholar 

  99. B.G. Saar, R.S. Johnston, C.W. Freudiger, X.S. Xie, E.J. Seibel, Coherent Raman scanning fiber endoscopy. Opt. Lett. 36, 2396–2398 (2011)

    Google Scholar 

  100. B.E. Bouma, G.J. Tearney, Clinical imaging with optical coherence tomography. Acad. Radiol. 9, 942–953 (2002)

    Google Scholar 

  101. G.J. Tearney, S.A. Boppart, B.E. Bouma, M.E. Brezinski, N.J. Weissman, J.F. Southern, J.G. Fujimoto, Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt. Lett. 21, 543–545 (1996)

    Google Scholar 

  102. B.E. Bouma, G.J. Tearney, Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography. Opt. Lett. 24, 531–533 (1999)

    Google Scholar 

  103. A.M. Rollins, R. Ung-arunyawee, A. Chak, R.C.K. Wong, K. Kobayashi, M.V. Sivak, J.A. Izatt, Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design. Opt. Lett. 24, 1358–1360 (1999)

    Google Scholar 

  104. B.E. Bouma, G.J. Tearney, C.C. Compton, N.S. Nishioka, High resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. Gastrointest. Endosc. 51, 467–474 (2000)

    Google Scholar 

  105. J.M.V. Sivak, K. Kobayashi, J.A. Izatt, A.M. Rollins, R. Ung-runyawee, A. Chak, R.C.K. Wong, G.A. Isenberg, J. Willis, High-resolution endoscopic imaging of the GI tract using optical coherence tomography. Gastrointest. Endosc. 51, 474–479 (2000)

    Google Scholar 

  106. I.K. Jang, G.J. Tearney, B.M. MacNeill, M. Takano, F. Moselewski, N. Iftimia, M. Shishkov, S.L. Houser, H.T. Aretz, E.F. Halpern, et al., In vivo characterization of coronary atherosclerotic plaque using optical coherence tomography. Circulation 111, 1551–1555 (2005)

    Google Scholar 

  107. G. Guagliumi, V. Sirbu, Optical coherence tomography: high resolution intravascular imaging to evaluate vascular healing after coronary stenting. Catheter Cardiovasc. Interv. 72, 237–247 (2008)

    Google Scholar 

  108. M.J. Suter, B.J. Vakoc, P.S. Yachimski, M. Shishkov, G.Y. Lauwers, M. Mino-Kenudson, B.E. Bouma, N.S. Nishioka, G.J. Tearney, Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging. Gastrointest. Endosc. 68, 745–753 (2008)

    Google Scholar 

  109. D.C. Adler, C. Zhou, T.H. Tsai, et al., Three-dimensional optical coherence tomography of Barrett’s esophagus and buried glands beneath neosquamous epithelium following radiofrequency ablation. Endoscopy 41, 773–776 (2009)

    Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Mark Pierce and Dr. Michal Pawlowski for a tremendous help, many suggestions, and discussions over the course of work to write this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz S. Tkaczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tkaczyk, T.S. (2013). Endomicroscopy. In: Liang, R. (eds) Biomedical Optical Imaging Technologies. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28391-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28391-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28390-1

  • Online ISBN: 978-3-642-28391-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics