Skip to main content

Multiphoton Imaging

  • Chapter
  • First Online:
Biomedical Optical Imaging Technologies

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2811 Accesses

Abstract

The nonlinear process of multiphoton imaging used in an optical microscope has inherent out-of-focus rejection of light and hence gives superior optical sectioning without a pinhole when compared with a confocal microscope. The lateral resolution remains close to the diffraction limit of the imaging optics. The flexibility of combining the various nonlinear contrast mechanisms, multiphoton microscopy is likely to become a major imaging modality in biomedical fields. With the current development of femtosecond pulsed laser technology, it is to be expected that multiphoton optical microscopes will continue to be advanced for high-resolution imaging in a variety of biomedical applications. This chapter will first discuss the principle of multiphoton process and then multiphoton imaging modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Göppert-Mayer, Uber Elementarakte mit zwei Quantensprüngen. Ann. Phys. (Leipzig) 9, 273–294 (1931)

    Google Scholar 

  2. W. Denk, H.H. Strickler, W.W. Webb, Two photon laser microscopy USA Patent 5,034,613 (1991)

    Google Scholar 

  3. J. Gannaway, C.J.R. Sheppard, Second harmonic imaging in the scanning optical microscope. Opt. Quantum Electron. 10, 435–439 (1978)

    Google Scholar 

  4. R. Hellwarth, P. Christensen, Nonlinear optical microscopic examination of structure in polycrystalline ZnSe. Opt. Commun. 12(3), 318–322 (1974)

    Google Scholar 

  5. M.D. Duncan, J. Reintjes, T.J. Manuccia, Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7(8), 350–352 (1982)

    Google Scholar 

  6. Y. Denk, H.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Google Scholar 

  7. Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, Nonlinear scanning laser microscopy by third-harmonic generation. Appl. Phys. Lett. 70(8), 922–924 (1997)

    Google Scholar 

  8. S. Maiti, J.B. Shear, R.M. Williams, W.R. Zipfel, W.W. Webb, Measuring serotonin distribution in live cells with three-photon excitation. Science 275, 530–532 (1997)

    Google Scholar 

  9. M. Schrader, K. Bahlmann, S.W. Hell, Three-photon-excitation microscopy: theory, experiment and applications. Optik 104, 116–124 (1997)

    Google Scholar 

  10. P.J. Campagnola, M. Wei, A. Lewis, L.M. Loew, High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J. 77(6), 3341–3349 (1999)

    Google Scholar 

  11. C.J.R. Sheppard, J. Gannaway, R. Kompfner, D.A. Walsh, The scanning harmonic optical microscope. IEEE J. Quantum Electron. 13(9), 912–912 (1977)

    Google Scholar 

  12. A. Zumbusch, G.R. Holtom, X.S. Xie, Three dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999)

    Google Scholar 

  13. M. Müller, J. Squier, K.R. Wilson, G.J. Brakenhoff, 3D-microscopy of transparent objects using third-harmonic generation. J. Microsc. 191, 266–274 (1998)

    Google Scholar 

  14. J.A. Squier, M. Muller, G.J. Brakenhoff, Third harmonic generation microscopy. Opt. Express 3, 315–324 (1998)

    Google Scholar 

  15. D. Yelin, Y. Silberberg, Laser scanning third-harmonic-generation microscopy in biology. Opt. Express 5, 169–175 (1999)

    Google Scholar 

  16. R.W. Boyd, Nonlinear Optics (Academic Press, Boston, 1992)

    Google Scholar 

  17. G.H. Patterson, D.W. Piston, Photobleaching in two-photon excitation microscopy. Biophys. J. 78(4), 2159–2162 (2000)

    Google Scholar 

  18. K. Koenig, Multiphoton microscopy in life sciences. J. Microsc. 200(2), 83–104 (2000)

    Google Scholar 

  19. C. Xu, W.W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. JOSA B 13(3), 481–491 (1996)

    Google Scholar 

  20. B. Masters, P. So, E. Gratton, Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72(6), 2405–2412 (1997)

    Google Scholar 

  21. F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2(12), 932–940 (2005)

    Google Scholar 

  22. P. Theer, W. Denk, On the fundamental imaging-depth limit in two-photon microscopy. JOSA A 23(12), 3139–3149 (2006)

    Google Scholar 

  23. N. Nishimura, C.B. Schaffer, B. Friedman, P.D. Lyden, D. Kleinfeld, Penetrating arterioles are a bottleneck in the perfusion of neocortex. PNAS 104(1), 365–370(2007)

    Google Scholar 

  24. W. Gobel, B.M. Kampa, F. Helmchen, Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat. Methods 4(1), 73–79 (2007)

    Google Scholar 

  25. F. Helmchen, W. Denk, New developments in multiphoton microscopy. Curr. Opin. Neurobiol. 12(5), 593–601 (2002)

    Google Scholar 

  26. J.C. Jung, M.J. Schnitzer, Multiphoton endoscopy. Opt. Lett. 28(11), 902–904 (2003)

    Google Scholar 

  27. W. Piyawattanametha, R.P.J. Barretto, T.H. Ko, B.A. Flusberg, E.D. Cocker, H. Ra, D. Lee, O. Solgaard, M.J. Schnitzer, Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror. Opt. Lett. 31(13), 2018–2020 (2006)

    Google Scholar 

  28. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7, 118 (1961)

    Google Scholar 

  29. G. He, S.H. Liu, Physics of Nonlinear Optics (World Scientific Publications, Singapore, 1999)

    Google Scholar 

  30. C.J.R. Sheppard, J. Gannaway, R. Kompfner, D.A. Walsh, The scanning harmonic optical microscope. IEEE J. Quantum Electron. 13(9), 912–912 (1977)

    Google Scholar 

  31. I. Freund, M. Deutsch, Second-harmonic microscopy of biological tissue. Opt. Lett. 11, 94–96 (1986)

    Google Scholar 

  32. I. Freund, D. Deutsch, A. Sprecher, Connective tissue polarity: optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys. J. 50, 693–712 (1986)

    Google Scholar 

  33. S.J. Lin, C.Y. Hsiao, Y. Sun, W. Lo, W.C. Lin, G.J. Jan, S.H. Jee, C.Y. Dong, Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy. Opt. Lett. 30, 622–624 (2005)

    Google Scholar 

  34. P.J. Campagnola, A.C. Millard, M. Terasaki, P.E. Hoppe, c.J. Malone, W.A. Mohler, Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82(1), 493–508 (2002)

    Google Scholar 

  35. S.W. Chu, S.P. Tai, M.C. Chan, S.K. Sun, I.C. Hsiao, C.H. Lin, Y.C. Chen, B.K. Lin, Thickness dependence of optical second harmonic generation in collagen fibrils. Opt. Express 15(19), 12005–12010 (2007)

    Google Scholar 

  36. V. Barzda, C. Greenhalgh, J. Ausder Au, S. Elmore, J. van Beek, J. Squier, Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy. Opt. Express 13, 8263–8276 (2005)

    Google Scholar 

  37. G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, S. Ushioda, Detection of starch granules in a living plant by optical second harmonic microscopy. J. Luminescence 87, 824–826 (2000)

    Google Scholar 

  38. N. Prent, R. Cisek, C. Greenhalgh, R. Sparrow, N. Rohitlall, M.S. Milkereit, C. Green, V. Barzda, Application of nonlinear microscopy for studying the structure and dynamics in biological systems. Proc. SPIE 5971, 5971061–5971068 (2005)

    Google Scholar 

  39. L. Moreaux, O. Sandre, M. Blanchard-Desce, J. Mertz, Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy. Opt. Lett. 25, 320–322 (2000)

    Google Scholar 

  40. S.W. Chu, I. Chen, T. Liu, C. Sun, S. Lee, B. Lin, P. Cheng, M. Kuo, D. Lin, H. Liu, Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy. J. Microsc. 208(3), 190–200 (2002)

    Google Scholar 

  41. N. Bloembergen, Nonlinear Optics, 4th edn. (Benjamen W. A., New York, 1965)

    Google Scholar 

  42. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)

    Google Scholar 

  43. D. Débarre, W. Suppato, A. Pena, A. Fabre, T. Tordgemann, L. Conbettes, M. Shane-Clein, E. Beaurepaire, Imaging in lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 3(1), 47–53 (2006)

    Google Scholar 

  44. C. Yu, S. Tai, C. Kung, W. Lee, Y. Chan, H. Liu, J. Lyu, C. Sun, Molecular third-harmonic-generation microscopy through resonance enhancement with absorbing dye. Opt. Lett. 33, 387–389 (2008)

    Google Scholar 

  45. S. Chu, I. Chen, T. Liu, P. C. Chen, C. Sun, B. Lin, Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Opt. Lett. 26, 1909–1911 (2001)

    Google Scholar 

  46. R.W. Terhune, P.D. Maker, C.M. Savage, Optical harmonic generation in calcite. Phys. Rev. Lett. 8(10), 404–406 (1962)

    Google Scholar 

  47. J. Cheng, X.S. Xie, Green’s function formulation for third-harmonic generation microscopy. JOSA B 19(7), 1604–1610 (2002)

    Google Scholar 

  48. R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003)

    Google Scholar 

  49. Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, Nonlinear scanning laser microscopy by third-harmonic generation. Appl. Phys. Lett. 70(8), 922–924 (1997)

    Google Scholar 

  50. M. Müller, J. Squier, K.R. Wilson, G.J. Brakenhoff, 3D-microscopy of transparent objects using third-harmonic generation. J. Microsc. 191, 266–274 (1998)

    Google Scholar 

  51. J.A. Squier, M. Muller, G.J. Brakenhoff, K.R. Wilson, Third harmonic generation microscopy. Opt. Express 3(9), 315–324 (1998)

    Google Scholar 

  52. D. Débarr, W. Supatto, E. Beaurepaire, Structure sensitivity in third-harmonic generation microscopy. Opt. Lett. 30, 2134–2136 (2005)

    Google Scholar 

  53. D. Debarre, W. Supatto, A. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. Schanne-Klein, E. Beaurepaire, Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 3(1), 47–53 (2006)

    Google Scholar 

  54. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, Y. Silberberg, Depth-resolved structural imaging by third-harmonic generation microscopy. J. Struct. Biol. 147(1), 3–11 (2004)

    Google Scholar 

  55. D. Oron, E. Tal, Y. Silberberg, Depth-resolved multiphoton polarization microscopy by third-harmonic generation. Opt. Lett. 28(23), 2315–2317 (2003)

    Google Scholar 

  56. V. Shcheslavskiy, G. Petrov, S. Saltiel, and V.V. Yakovlev, Quantitative characterization of aqueous solutions probed by the third-harmonic generation microscopy. J. Struct. Biol. 147(1), 42–49 (2004)

    Google Scholar 

  57. D. Débarre, N. Olivier, E. Beaurepaire, Signal epidetection in third-harmonic generation microscopy of turbid media. Opt. Express 15(15), 8913–8924 (2007)

    Google Scholar 

  58. E.J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, N. Tavernarakis, In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy. J. Microsc. 229(1), 141–150 (2008)

    Google Scholar 

  59. F. Aptel, N. Olivier, A. Deniset-Besseau, J. Legeais, K. Plamann, M. Schanne-Klein, E. Beaurepaire, Multimodal nonlinear imaging of the human cornea. Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010)

    Google Scholar 

  60. S. Fine, W.P. Hansen, Optical second harmonic generation in biological systems. Appl. Opt. 10, 2350–2353 (1971)

    Google Scholar 

  61. M. Chan, S. Chu, C. Tseng, Y. Wen, Y. Chen, G. Su, C. Sun, Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies. Microsc. Res. Technol. 71(8), 559–563 (2008)

    Google Scholar 

  62. L. Canioni, S. Rivet, L. Sarger, R. Barille, P. Vacher, P. Voisin, Imaging of Ca2+ intracellular dynamics with a third-harmonic generation microscope. Opt. Lett. 26(8), 515–517 (2001)

    Google Scholar 

  63. A.C. Millard, P.W. Wiseman, D.N. Fittinghoff, K.R. Wilson, J.A. Squier, M. Müller, Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source. Appl. Opt. 38, 7393–7397 (1999)

    Google Scholar 

  64. W.R. Zipfel, R.M. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21(11), 1369–1377 (2003)

    Google Scholar 

  65. G. Cox, N. Moreno, J. Feijó, Second-harmonic imaging of plant polysaccharides. J. Biomed. Opt. 10, 0240131–0240136 (2005)

    Google Scholar 

  66. R. Carriles, D.N. Schafer, K.E. Sheetz, J.J. Field, R. Cisek, V. Barzda, A.W. Sylvester, J.A. Squier, Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev. Sci. Instrum. 80, 081101 (2009)

    Google Scholar 

  67. C. Sun, Higher harmonic generation microscopy. Adv. Biochem. Eng. Biotechnol. 95, 17–56 (2005)

    Google Scholar 

  68. J.A. Squier, M. Muller, High resolution nonlinear microscopy. Rev. Sci. Instrum. 72(7), 2855–2867 (2001)

    Google Scholar 

  69. T.Y.F. Tsang, Optical third-harmonic generation at interfaces. Phys. Rev. A 52, 4116–4125 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakil Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rehman, S., Sheppard, C.J.R. (2013). Multiphoton Imaging. In: Liang, R. (eds) Biomedical Optical Imaging Technologies. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28391-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28391-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28390-1

  • Online ISBN: 978-3-642-28391-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics