Advertisement

Confocal Microscopy

Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Confocal microscopy is a technique for increasing the contrast of microscope images, particularly in thick specimens. It has several advantages over conventional optical microscopy, including controllable depth of field, better image quality and the ability to collect optical sections of thick specimens. In this chapter, we will first discuss the principle of confocal microscopy and then the design of confocal microscopes. We will also discuss confocal techniques and the imaging performance of the confocal microscope.

Keywords

Focal Plane Confocal Reflection Microscope Digital Holographic Microscopy Scanning Optical Microscope Pinhole Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Minsky, Microscopy apparatus. 3,013,467 Filed 7 Nov 1957 - Issued 19 Dec 1961Google Scholar
  2. 2.
    H. Goldman, Spaltlampenphotographie und –photometrie. Ophthalmologica 98, 257–270 (1940)Google Scholar
  3. 3.
    Z. Koana, J. Illum. Eng. Instit. 371, 26 (1943)Google Scholar
  4. 4.
    H. Naora, Microspectrophotometry and cytochemical analysis of nucleic acids. Science 114, 279–280 (1951)Google Scholar
  5. 5.
    M.D. Davidovits, M.D. Egger, Scanning laser microscope. Nature 223, 831 (1969)Google Scholar
  6. 6.
    A.F. Slomba, D.F. Wasserman, G.I. Gaufman, J.F. Nester, A laser flying spot scanner for use in automatised fluorescence antibody instrumentation. J. Assoc. Adv. Med. Instrum. 6, 230–234 (1972)Google Scholar
  7. 7.
    M. Petrán, M. Hadravsky, M.D. Egger, R. Galambos, Tandem scanning reflected light microscope. J. Opt. Soc. Am. 58, 661–664 (1968)Google Scholar
  8. 8.
    T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, H. Ishida, High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl. Opt. 41, 4704–4708 (2002)Google Scholar
  9. 9.
    L. Giniunas, R. Juskaitis, S.V. Shatalin, Scanning fiber-optic microscope. Electron. Lett. 27, 724–726 (1991)Google Scholar
  10. 10.
    T. Dabbs, M. Glass, Single-mode fibers used as confocal microscope pinholes. Appl. Opt. 31, 705–706 (1992)Google Scholar
  11. 11.
    P.M. Delaney, M.H. Harris, R.G. King, Fibre-optic laser scanning confocal microscopy suitable for fluorescence imaging. Appl. Opt. 33, 573–577 (1994)Google Scholar
  12. 12.
    F. Blais, Control of galvanometers for high precision laser scanning systems. Opt. Eng. 27(2), 104–110 (1988)Google Scholar
  13. 13.
    Q.T. Nguyen, N. Callamaras, C. Hsieh, I. Parker, Construction of a two-photon microscope for video-rate Ca(2+) imaging. Cell Calcium 30(6), 383–393 (2001)Google Scholar
  14. 14.
    K.H. Kim, C. Buehler, P.So, High-speed, two-photon scanning microscope. Appl. Opt. 38(28), 6004–6009 (1999)Google Scholar
  15. 15.
    C.L. Evans, E.O. Potma, M. Puoris’haag, D. Côté, C.P. Lin, X.S. Xie, Chemical imaging of tissue in vivo with video-rate coherent anti-stokes Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 102(46), 16807–16812 (2005)Google Scholar
  16. 16.
    G.D. Reddy, P. Saggau, Fast three-dimensional scanning scheme using acousto-optic deflectors. J. Biomed. Opt. 10, 064038 (2005)Google Scholar
  17. 17.
    S. Zeng, K. Bi, S. Xue, Y. Liu, X. Lv, Q. Luo, Acousto-optic modulator system for femtosecond laser pulses. Rev. Sci. Instrum. 78, 015103 (2007)Google Scholar
  18. 18.
    G.J. Brakenhoff, J. Squier, T. Norris, A.C. Bliton, M.H. Wade, B. Athey, Real-time two-photon confocal microscopy using a femtosecond, amplified Ti Sapphire system. J. Microsc. 181, 253–259 (1996)Google Scholar
  19. 19.
    M. Fricke, T. Nielsen, Two-dimensional imaging without scanning by multifocal multiphoton microscopy. Appl. Opt. 44, 2984–2988 (2005)Google Scholar
  20. 20.
    V. Andresen, A. Egner, S.W. Hell, Time-multiplexed multifocal multiphoton microscope. Opt. Lett. 26(2), 75–77 (2001)Google Scholar
  21. 21.
    G.J. Brakenhoff, K. Visscher, Confocal imaging with bilateral scanning and array detectors. J. Microsc. 165, 139–146 (1992)Google Scholar
  22. 22.
    R. Wolleschensky, B. Zimmermann, High-speed confocal fluorescence imaging with a novel line scanning microscope. J. Biomed. Opt. 11, 064011 (2006)Google Scholar
  23. 23.
    P. Török, C.J.R. Sheppard, Z. Laczik, Dark-field and differential phase contrast imaging modes in confocal microscopy using a half-aperture stop. Optik 103, 101–106 (1996)Google Scholar
  24. 24.
    C.J. Cogswell, C.J.R. Sheppard, Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal (DIC) imaging. J. Microsc. 165, 81–101 (1992)Google Scholar
  25. 25.
    D.K. Hamilton, C.J.R. Sheppard, A confocal interference microscope. Opt. Acta 29, 1573–1577 (1982)Google Scholar
  26. 26.
    C.J.R. Sheppard, Scanning optical microscopy, in Advances in Optical and Electron Microscopy, ed. by R. Barer, V.E. Cosslett (Academic Press, London, 1987)Google Scholar
  27. 27.
    D.K. Hamilton, C.J.R. Sheppard, Differential phase contrast in scanning optical microscopy. J. Microsc. 133, 27–39 (1984)Google Scholar
  28. 28.
    C.J.R. Sheppard, D.K. Hamilton, H.J. Matthews, Scanning optical microscopy of low contrast samples. Nature 334, 572 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of BioEngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  3. 3.Department of BioEngineeringNational University of SingaporeSingaporeSingapore
  4. 4.Singapore-MIT Alliance for Research and TechnologySingaporeSingapore

Personalised recommendations