Optical Coherence Tomography: Technical Aspects

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Optical coherence tomography (OCT) is a high-resolution, noninvasive, 3D imaging technique with great potential in both clinical and fundamental research applications in many areas. Owing to its exceptionally high spatial resolution and velocity sensitivity, the functional extension of OCT techniques can simultaneously provide tissue structure, blood perfusion, birefringence, and other physiological information and it has great potential for basic biomedical research and clinical medicine. OCT has the far-reaching potential to be a quantitative imaging technique that could impact many, as yet unexplored, areas and should therefore be considered a vital measurement tool. In this chapter, we will first discuss the principle of operation and then the practical aspects of the OCT system; we will also provide detailed discussion on different OCT schemes and its functional extensions.


Optical Coherence Tomography Amplify Spontaneous Emission Optical Coherence Tomography Imaging Axial Resolution Michelson Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Tanno, T. Ichikawa, A. Saeki, Lightwave Reflection Measurement. Japanese Patent # 2010042. (1990) (Japanese Language)Google Scholar
  2. 2.
    S. Chiba, N. Tanno, Backscattering optical heterodyne tomography. Prepared for the 14th Laser Sensing Symposium (1991) (Japanese language)Google Scholar
  3. 3.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Shuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178–1181 (1991)Google Scholar
  4. 4.
    A.F. Fercher, K. Mengedoht, W. Werner, Eye-length measurement by interferometry with partially coherent light. Opt. Lett. 13, 1867–1869 (1988)Google Scholar
  5. 5.
    C.K. Hitzenberger, W. Drexler, A.F. Fercher, Measurement of corneal thickness by laser Doppler interferometry. Invest. Ophthalmol. Vis. Sci. 33, 98–103 (1992)Google Scholar
  6. 6.
    J.A. Izatt, M.R. Hee, E.A. Swanson, C.P. Lin, D. Huang, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, Micrometer-scale resolution imaging of the anterior eye with optical coherence tomography. Arch. Ophthalmol. 112, 1584–1589 (1994)Google Scholar
  7. 7.
    W. Clivaz, F. Marquis-Weible, R.P. Salathe, R.P. Novak, H.H. Gilgen, High-resolution reflectometry in biological tissue. Opt. Lett. 17, 4–6 (1992)Google Scholar
  8. 8.
    J.M. Schmitt, A. Kn ̈uttel, R.F. Bonner, Measurement of optical properties of biological tissues by low-coherence reflectometry. Appl. Opt. 32, 6032–6042 (1993)Google Scholar
  9. 9.
    X. Clivaz, F. Marquis-Weible, R.P. Salathé, R.P. Novak, H.H. Gilgen, High resolution reflectometry in biological tissues. Opt. Lett. 17, 4–6 (1992)Google Scholar
  10. 10.
    J.O. Schenk, M.E. Brezinski, Ultrasound induced improvement in optical coherence tomography (OCT) resolution. PNAS 99(15), 9761–9764 (2002)Google Scholar
  11. 11.
    A.M Rollins, Another way to peer inside the body: optical coherence tomography combines interferometry and high-tech light sources to capture images of living tissue. Mach. Des. (2005)
  12. 12.
    B.E. Bouma, G.J. Tearney (eds.), Handbook of Optical Coherence Tomography (Marcel Dekker, Inc., New York, 2003)Google Scholar
  13. 13.
    P. Latkany, Retinal disease: evolving treatment approaches. Medscape Medical News (2006). [online] Available from:
  14. 14.
    R.C. Youngquist, S. Carr, D.E.N. Davies, Optical coherence-domain reflectometry – a new optical evaluation technique. Opt. Lett. 12(3), 158–160 (1987)Google Scholar
  15. 15.
    K. Takada, I. Yokohama, K. Chida, J. Noda, New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Opt. 26, 1603–1606 (1987)Google Scholar
  16. 16.
    E. Hecht, Optics, 3rd edn. (Addison Wesley, Reading, 1998)Google Scholar
  17. 17.
    J.W Goodman, Statistical Optics (Wiley, New York, 1985)Google Scholar
  18. 18.
    E.A. Swanson, D. Huang, M.R. Hee, J.G. Fujimoto, C.P. Lin, C.A. Puliafito, High-speed optical coherence domain reflectometry. Opt. Lett. 17, 151–153 (1992)Google Scholar
  19. 19.
    W. Drexler, Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9, 47–71 (2004)Google Scholar
  20. 20.
    A. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography – principles and applications. Rep. Progr. Phys. 66, 239–303 (2003)Google Scholar
  21. 21.
    A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, Measurement of Intraocular Distances by Backscattering Spectral Interferometry. Opt. Commun. 117, 43–48 (1995)Google Scholar
  22. 22.
    J.M. Schmitt, G. Kumar, Optical scattering properties of soft tissue: a discrete particle model. Appl. Opt. 37, 2788–2797 (1998)Google Scholar
  23. 23.
    J.M. Schmitt, A. Knuttel, M. Yadlowsky, M.A. Eckhaus, Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys. Med. Biol. 39, 1705 (1994)Google Scholar
  24. 24.
    B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A.F. Fercher, W. Drexler, C. Schubert, P.K. Ahnelt, M. Mei, R. Holzwarth, W.J. Wadsworth, J.C. Knight, P.S. Russel, Enhanced visualization ofchoroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm. Opt. Express 11, 1980–1986 (2003)Google Scholar
  25. 25.
    A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, W. Drexler, In vivo retinaloptical coherence tomography at 1040 nm-enhanced penetration into the choroid. Opt. Express 13, 3252–3258 (2005)Google Scholar
  26. 26.
    B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J.E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, W. Drexler, Three-dimensional optical coherence tomography at 1050 nm versus800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients. J. Biomed. Opt. 12, 041211 (2007)Google Scholar
  27. 27.
    D.M. de Bruin, D.L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T.C. Chen, D.D. Esmaili, J.F. de Boer, In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm. Invest. Ophthalmol. Vis. Sci. 49, 4545–4552 (2008)Google Scholar
  28. 28.
    R. Huber, D. Adler, V. Srinivasan, J.G. Fujimoto, Fourier domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt. Lett. 32, 2049–2051 (2007)Google Scholar
  29. 29.
    C.F. Lin, B.L. Lee, Extremely broadband AlGaAs/GaAs super-luminescentdiodes. Appl. Phys. Lett. 71, 1598–1600 (1997)Google Scholar
  30. 30.
    C.F. Lin, B.R. Wu, L.W. Laih, T.T. Shih, Sequence influence of nonidentical InGaAsP quantum wells on broadband characteristics of semiconductor optical amplifiers superluminescent diodes. Opt. Lett. 26, 1099–1101 (2001)Google Scholar
  31. 31.
    P.J. Poole, M. Davies, M. Dion, Y. Feng, S. Charbonneau, R.D. Goldberg, I.V. Mitchell, The fabrication of a broad-spectrum 1215 light-emitting diode using high-energy ion implantation. IEEE Photon. Technol. Lett. 8, 1145–1147 (1996)Google Scholar
  32. 32.
    J.R. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993)Google Scholar
  33. 33.
    B.E. Bouma, G.J. Tearney, S.A. Boppart, M.R. Hee, M.E. Brezinski, J.G. Fujimoto, High-resolution optical coherence tomographic imaging using a mode-locked Ti: Al2O3 laser source. Opt. Lett. 20, 1486–1489 (1995)Google Scholar
  34. 34.
    X. Clivaz, F. Marquis-Weible, R.P. Salathe, Optical low coherence reflectometry with 1.9 mm spatial resolution. Electron. Lett. 28, 1553–1555 (1992)Google Scholar
  35. 35.
    B.E. Bouma, G.J. Tearney, I.P. Biliinski, B. Golubovic, J.G. Fujimoto, Self-phase-modulated Kerr-lens mode-locked Cr: forsterite laser source for optical coherence tomography. Opt. Lett. 21, 1839–1842 (1996)Google Scholar
  36. 36.
    T.A. Birks, W.J. Wadsworth, P.S.J. Russell, Supercontinuum generation in tapered fibers. Opt. Lett. 25, 1415–1417 (2000)Google Scholar
  37. 37.
    A.L. Gaeta, Nonlinear propagation and continuum generation in microstructured optical fibers. Opt. Lett. 27, 924–926 (2002)Google Scholar
  38. 38.
    D.L. Marks, A.L. Oldenburg, J.J. Reynolds, S.A. Boppart, Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media. Appl. Opt. 42, 204–217 (2003)Google Scholar
  39. 39.
    A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E.M. Anger, P.K. Ahnelt, M. Stur, J.E. Morgan, A. Cowey, G. Jung, A.S.T. Le, Compact, low-cost Ti \({\mathrm{Al}}_{2}{\mathrm{O}}_{3}\) laser for in vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 28, 905–907 (2003)Google Scholar
  40. 40.
    B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A.F. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J.C. Knight, P.St.J. Russell, M. Vetterlein, E. Scherzer, Submicrometer axial resolution optical coherence tomography. Opt. Lett. 27(20), 1800–1802 (2002)Google Scholar
  41. 41.
    A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, D. Kopf, Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. Opt. Express 14(3), 1145–1160 (2006)Google Scholar
  42. 42.
    H. Wang, A.M. Rollins, Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography. Appl. Opt. 46(10), 1787–1794 (2007)Google Scholar
  43. 43.
    P. Cimalla, J. Walther, M. Mehner, M. Cuevas, E. Koch, Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging. Opt. Express 17, 19486–19500 (2009)Google Scholar
  44. 44.
    F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, H. Kurz, Simultaneous dual-band ultra-high resolution optical coherence tomography. Opt. Express 15(17), 10832–10841 (2007)Google Scholar
  45. 45.
    S. Kray, F. Spöler, M. Först, H. Kurz, High-resolution simultaneous dual-band spectral domain optical coherence tomography. Opt. Lett. 34(13), 1970–1972 (2009)Google Scholar
  46. 46.
    S.H. Yun, C. Boudoux, G.J. Tearney, B.E. Bouma, High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett. 28(20), 1981–1983 (2003)Google Scholar
  47. 47.
    S. Yun, G. Tearney, J. de Boer, N. Iftimia, B. Bouma, High-speed optical frequency-domain imaging. Opt. Express 11(22), 2953–2963 (2003)Google Scholar
  48. 48.
    R. Huber, M. Wojtkowski, J.G. Fujimoto, J.Y. Jiang, A.E. Cable, Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt. Express 13(26), 10523–10538 (2005)Google Scholar
  49. 49.
    M.A. Choma, K. Hsu, J.A. Izatt, Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J. Biomed. Opt. 10, 044009 (2005)Google Scholar
  50. 50.
    R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, K. Hsu, Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express 13(9), 3513–3528 (2005)Google Scholar
  51. 51.
    R. Huber, M. Wojtkowski, J.G. Fujimoto, Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14(8), 3225–3237 (2006)Google Scholar
  52. 52.
    R. Huber, D.C. Adler, J.G. Fujimoto, Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett. 31(20), 2975–2977 (2006)Google Scholar
  53. 53.
    M.Y. Jeon, J. Zhang, Z. Chen, Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging. Opt. Express 16(6), 3727–3737 (2008)Google Scholar
  54. 54.
    G.Y. Liu, A. Mariampillai, B.A. Standish, N.R. Munce, X. Gu, I.A. Vitkin, High power wavelength linearly swept mode locked fiber laser for OCT imaging. Opt. Express 16(18), 14095–14105 (2008)Google Scholar
  55. 55.
    Y. Mao, C. Flueraru, S. Sherif, S. Chang, High performance wavelength-swept laser with mode-locking technique for optical coherence tomography. Opt. Commun. 282, 88–92 (2009)Google Scholar
  56. 56.
    J.G. Fujimoto, Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21(11), 1361–1367 (2003)Google Scholar
  57. 57.
    M.E. Brezinski, G.J. Tearney, S.A. Boppart, B.E. Bouma, E.A. Swanson, J.F. Southern, J.G. Fujimoto, High speed catheter based OCT imaging of coronary microstructure. Circulation 94(8), 1494–1494 (1996)Google Scholar
  58. 58.
    W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, J.G. Fujimoto, In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24(17), 1221–1223 (1999)Google Scholar
  59. 59.
    Y. Chen, S. Huang, A.D. Aguirre, J.G. Fujimoto, High-resolution line-scanning optical coherence microscopy. Opt. Lett. 32, 1971–1973 (2007)Google Scholar
  60. 60.
    Y. Watanabe, K. Yamada, M. Sato, In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera. Opt. Commun. 261, 376–380 (2006)Google Scholar
  61. 61.
    Y. Watanabe, K. Yamada, M. Sato, Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography. Opt. Express 14, 5201–5209 (2006)Google Scholar
  62. 62.
    E. Beaurepaire, A.C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, Full-field optical coherence tomography. Opt. Lett. 23, 244–246 (1998)Google Scholar
  63. 63.
    E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberl, C. Rullie‘re, P. Minot, M. Lasse‘gues, J. Bazeille, Wide-field optical coherence tomography: imaging of biological tissues. Appl. Opt. 41, 2059 (2002)Google Scholar
  64. 64.
    S. Bourquin, V. Monterosso, P. Seitz, R.P. Salathe, Video-rate optical low-coherence reflectometry based on a linear smart detector array. Opt. Lett. 25(2), 102–104 (2000)Google Scholar
  65. 65.
    K. Creath, Phase measurement interferometry techniques, in Progress in Optics, vol. 24, ed. by E. Wolf, (Elsevier Science Publishers, Amsterdam, 1988), pp. 349–393Google Scholar
  66. 66.
    G.S. Kino, S.S.C. Chim, Mirau correlation microscope. Appl. Opt. 29, 3775–3783 (1990)Google Scholar
  67. 67.
    M. Davidson, K. Kaufman, I. Mazor, F. Cohen, An Application of Interference Microscope to Integrated Circuit Inspection and Metrology. Proc. SPIE, 775, 233–247 (1987)Google Scholar
  68. 68.
    A. Dubois, A.C. Boccara, M. Lebec, Real-time reflectivity and topography imagery of depth-resolved microscopic surfaces. Opt. Lett. 24, 309–311 (1999)Google Scholar
  69. 69.
    A. Dubois, L. Vabre, A.C. Boccara, E. Beaurepaire, High-resolution full-field optical coherence tomography with a Linnik microscope. Appl. Opt. 41, 805–812 (2002)Google Scholar
  70. 70.
    W.Y. Oh, B.E. Bouma, N. Iftimia, S.H. Yun, R. Yelin, G.J. Tearney, Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera. Opt. Express 14, 726–735 (2006)Google Scholar
  71. 71.
    A.F. Fercher, C.K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, A thermal light source technique for optical coherence tomography. Opt. Commun. 185, 57–64 (2000)Google Scholar
  72. 72.
    B. Karamata, P. Lambelet, M. Laubscher, R.P. Salathé, T. Lasser, Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography. Opt. Lett. 29, 736–738 (2004)Google Scholar
  73. 73.
    M.S. Hrebesh, R. Dabu, M. Sato, In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography. Opt. Commun. 282, 674–683 (2009)Google Scholar
  74. 74.
    M.S. Hrebesh, Y. Watanabe, M. Sato, Spatial phase-shifting interferometer using paired wedge prism and combined wave plate. Jpn. J. Appl. Phys. Part 2: Lett. 46(12–16), L369–L371 (2007)Google Scholar
  75. 75.
    M.S. Hrebesh, Y. Watanabe, M. Sato, Profilometry with compact single-shot low-coherence time-domain interferometry. Opt. Commun. 281(18), 4566–4571 (2008)Google Scholar
  76. 76.
    G. Hausler, M.W. Lindner, Coherence radar and Spectral radar- new tools for dermatological diagnosis. J. Biomed. Opt. 3, 21–31 (1998)Google Scholar
  77. 77.
    R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)Google Scholar
  78. 78.
    M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)Google Scholar
  79. 79.
    J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003)Google Scholar
  80. 80.
    M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A.F. Fercher, Full range complex spectral optical coherence tomography technique in eye imaging. Opt. Lett. 27, 1415–1417 (2002)Google Scholar
  81. 81.
    B. Grajciar, M. Pircher, A.F. Fercher, R.A. Leitgeb, Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye. Opt. Express 13, 1131–1137 (2005)Google Scholar
  82. 82.
    T. Endo, Y. Yasuno, F. Truffer, G. Aoki, S. Makita, M. Itoh, T. Yatagai, Line-field Fourier-domain optical coherence tomography. Proc. SPIE 5690, 168–173 (2005)Google Scholar
  83. 83.
    S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 22, 340–342 (1997)Google Scholar
  84. 84.
    R. Huber, M. Wojtkowski, J.G. Fujimoto, Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14, 3225–3237 (2006)Google Scholar
  85. 85.
    S.W. Lee, B.M. Kim, Line-field optical coherence tomography using frequency-sweeping source. IEEE J. Sel. Top. Quantum Electron 14(1), 50–55 (2008)Google Scholar
  86. 86.
    M. Sarunic, M.A. Choma, C.I. Yang, J.A. Izatt, Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers. Opt. Express 13, 957–967 (2005)Google Scholar
  87. 87.
    R.K. Wang, In vivo full range complex Fourier domain optical coherence tomography. Appl. Phys. Lett. 90, 054103 (2007)Google Scholar
  88. 88.
    Y. Yasuno, S. Makita, T. Endo, M. Itoh, Y. Yatagai, Simultaneous B-M-mode scanning method for real time Fourier domain optical coherence tomography. Appl. Opt. 45, 1861–1865 (2006)Google Scholar
  89. 89.
    L. An, R.K. Wang, Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography. Opt. Lett. 32, 3423–3425 (2007)Google Scholar
  90. 90.
    M.R. Hee, D. Huang, E.A. Swanson, J.G. Fujimoto, Polarization sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B. 9,903–908 (1992)Google Scholar
  91. 91.
    E. Gotzinger, M. Pircher, C.K. Hitzenberger, High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt. Express 13, 10217–10229 (2005)Google Scholar
  92. 92.
    Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, T. Yatagai, Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. Opt. Lett. 27, 1803–1805 (2002)Google Scholar
  93. 93.
    B.H. Park, M.C. Pierce, B. Cense, S.H. Yun, M. Mujat, G.J. Tearney, B.E. Bouma, J.F. de Boer, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1. 3 μm. Opt. Express 13, 3931–3944 (2005)Google Scholar
  94. 94.
    S. Makita, Y. Yasuno, T. Endo, M. Itoh, T. Yatagai, Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography. Appl. Opt. 45, 1142–1147 (2006)Google Scholar
  95. 95.
    M. Yamanari, S. Makita, V.D. Madjarova, T. Yatagai, Y. Yasuno, Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. Opt. Express 14, 6502–6515 (2006)Google Scholar
  96. 96.
    M. Yamanari, S. Makita, Y. Yasuno, Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. Opt. Express 16, 5892–5906 (2008)Google Scholar
  97. 97.
    J.F. de Boer, S.M. Srinivas, A. Malekafzali, Z. Chen, J.S. Nelson, Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Opt. Express 3, 212–218 (1998)Google Scholar
  98. 98.
    C.E. Saxer, J.F. de Boer, B. Hyle Park, Y. Zhao, Z. Chen, J.S. Nelson, High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin. Opt. Lett. 25, 1355–1357 (2000)Google Scholar
  99. 99.
    S. Jiao, L.V. Wang, Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography. Opt. Lett. 27, 101–103 (2002)Google Scholar
  100. 100.
    S. Jiao, Y. Gang, L.V. Wang, Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Appl. Opt. 39, 6318–6324 (2000)Google Scholar
  101. 101.
    J.F. de Boer, T.E. Milner, M.J.C. van Gemert, J. Stuart Nelson, Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22, 934–936 (1997)Google Scholar
  102. 102.
    Bernhard Baumann, WooJhon Choi, Benjamin Potsaid, David Huang, Jay S. Duker, and James G. Fujimoto, “Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20, 10229–10241 (2012)Google Scholar
  103. 103.
    Z.P. Chen, T.E. Milner, D. Dave, J.S. Nelson, Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt. Lett. 22, 64–66 (1997)Google Scholar
  104. 104.
    Z.P. Chen, T.E. Milner, S. Srinivas, X.J. Wang, A. Malekafzali, M.J.C. van Gemert, J.S. Nelson, Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt. Lett. 22, 1–3 (1997)Google Scholar
  105. 105.
    J.A. Izatt, M.D. Kulkarni, S. Yazdanfar, J.K. Barton, A.J. Welsh, In vivo color Doppler imaging of picoliter blood volumes using optical coherence tomography. Opt. Lett. 22, 1439–1441 (1997)Google Scholar
  106. 106.
    S. Yazdanfar, M.D. Kulkarni, J.A. Izatt, High-resolution of in-vivo cardiac dynamics using color Doppler optical coherence tomography. Opt. Express 1, 424–431 (1997)Google Scholar
  107. 107.
    M.D. Kulkarni, T.G. van Leeuwen, S. Yazdanfar, J.A. Izatt, Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography. Opt. Lett. 23, 1057–1059 (1997)Google Scholar
  108. 108.
    Z. Ding, Y. Zhao, H. Ren, J. Nelson, Z. Chen, Real-time phase-resolved optical coherence tomography and optical Doppler tomography. Opt. Express 10, 236–245 (2002)Google Scholar
  109. 109.
    B.R. White, M.C. Pierce, N. Nassif, B. Cense, B.H. Park, G.J. Tearney, B.E. Bouma, T.C. Chen, J.F. de Boer, In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt. Express 11, 3490–3497 (2003)Google Scholar
  110. 110.
    R.A. Leitgeb, L. Schmetterer, W. Drexler, A.F. Fercher, R.J. Zawadzki, T. Bajraszewski, Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt. Express 11, 3116–3121 (2003)Google Scholar
  111. 111.
    R.A. Leitgeb, L. Schmetterer, C.K. Hitzenberger, A.F. Fercher, F. Berisha, M. Wojtkowski, T. Bajraszewski, Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography. Opt. Lett. 29, 171–173 (2004)Google Scholar
  112. 112.
    Z. Chen, Y. Zhao, S.M. Srinivas, J.S. Nelson, N. Prakash, R.D. Frostig, Optical Doppler tomography. IEEE J. Sel. Top. Quantum Electron. 5, 1134–1141 (1999)Google Scholar
  113. 113.
    S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, Optical coherence angiography. Opt. Express14, 7821–7840 (2006)Google Scholar
  114. 114.
    M.A. Choma, A.K. Ellerbee, S. Yazdanfar, J.A. Izatt, Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy. J. Biomed. Opt. 11, 024014 (2006)Google Scholar
  115. 115.
    A. Mariampillai, B.A. Standish, N.R. Munce, C. Randall, G. Liu, J.Y. Jiang, A.E. Cable, I.A. Vitkin, V.X.D. Yang, Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system. Opt. Express 15, 1627–1638 (2007)Google Scholar
  116. 116.
    H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, C.A. Puliafito, W. Zhao, Automatic retinal blood flow calculation using spectral domain optical coherence tomography. Opt. Express 15, 15193–15206 (2007)Google Scholar
  117. 117.
    Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, J.S. Nelson, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25, 114–116 (2000)Google Scholar
  118. 118.
    R.K. Wang, High resolution visualisation of fluid dynamics with Doppler Optical Coherence Tomography. Measure. Sci. Technol. 15, 725–733 (2004)Google Scholar
  119. 119.
    R.K. Wang, S.L. Jacques, Z. Ma, S. Hurst, S. Hanson, A. Gruber, Three dimensional optical angiography. Opt. Express 15, 4083–4097 (2007)Google Scholar
  120. 120.
    R.K. Wang, S. Hurst, Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength. Opt. Express 15(18), 11402–11412 (2007)Google Scholar
  121. 121.
    R.K. Wang, L. An, Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. Opt. Express 17, 8926–8940 (2009)Google Scholar
  122. 122.
    L. An, H.M. Subhash, D.J. Wilson, R.K. Wang, High resolution wide-field imaging of retinal and choroidal blood perfusion with optical micro-angiography. J. Biomed. Opt. 15(2), 026011-1-9, (2010)Google Scholar
  123. 123.
    R.K. Wang, L. An, S. Saunders, D. Wilson, Optical microangiography provides depth resolved images of directional ocular blood perfusion in posterior eye segment. J. Biomed. Opt. 15 (2010)Google Scholar
  124. 124.
    Y.L. Jia, R.K. Wang, Optical micro-angiography images structural and functional cerebral blood perfusion in mice with cranium left intact. J. Biophotonics. 22, 57–63 (2010)Google Scholar
  125. 125.
    J.M. Schmitt, S.H. Xiang, K.M. Yung, Differential absorption imaging with optical coherence tomography. J. Opt. Soc. Am. A15, 2288–2296 (1998)Google Scholar
  126. 126.
    Y. Pan, D. Farkas, Non-invasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions. J. Biomed. Opt. 03, 446–455 (1998)Google Scholar
  127. 127.
    U. Morgner, W. Drexler, F.X. Kärtner, X.D. Li, C. Pitris, E.P. Ippen, J.G. Fujimoto, Spectroscopic optical coherence tomography. Opt. Lett.25, 111–113 (2000)Google Scholar
  128. 128.
    R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C.K. Hitzenberger, M. Sticker, A.F. Fercher, Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt. Lett.25, 820–822 (2000)Google Scholar
  129. 129.
    R. Leitgeb, M. Wojtkowski, C. Hitzenberger, A. Fercher, H. Sattmann, Spectroscopic analysis of substances by frequency domain Optical Coherence Tomography, in Coherence Domain Optical Methods In Biomedical Science and Clinica Applications V , 123–127 (2001)Google Scholar
  130. 130.
    J. Su, I.V. Tomov, Y. Jiang, Z. Chen, High-resolution frequency-domain second-harmonic optical coherence tomography. Appl. Opt. 46, 1770–1775 (2007)Google Scholar
  131. 131.
    M.V. Sarunic, B.E. Applegate, J.A. Izatt, Spectral domain second-harmonic optical coherence tomography. Opt. Lett.30, 2391–2393 (2005)Google Scholar
  132. 132.
    J.A. Izatt, M.R. Hee, E.A. Swanson, C.P. Lin, D. Huang, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch. Ophthalmol. 112, 1584–1589 (1994)Google Scholar
  133. 133.
    E.A. Swanson, J.A. Izatt, M.R. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864–1866 (1993)Google Scholar
  134. 134.
    H. Ozdemir, S.A. Karacorlu, M. Karacorlu, Early optical coherence tomography changes after photodynamic therapy in patients with age-related macular degeneration. Am. J. Ophthalmol. 141, 574–576 (2006)Google Scholar
  135. 135.
    A. Salinas-Alaman, A. Garcia-Layana, M.J. Maldonado, C. Sainz-Gomez, A. Alvarez-Vidal, Using optical coherence tomography to monitor photodynamic therapy in age related macular degeneration. Am. J. Ophthalmol. 140, 23–28 (2005)Google Scholar
  136. 136.
    W. Goebel, R. Franke, Retinal thickness in diabetic retinopathy – comparison of optical coherence tomography, the retinal thickness analyzer, and fundus photography. Retina, 26, 49–57 (2006)Google Scholar
  137. 137.
    A. Polito, M. Del Borrello, G. Polini, F. Furlan, M. Isola, F. Bandello, Diurnal variation in clinically significant diabetic macular edema measured by the stratus OCT. Retina, 26, 14–20 (2006)Google Scholar
  138. 138.
    A.J. Witkin, T.H. Ko, J.G. Fujimoto, J.S. Schuman, C.R. Baumal, A.H. Rogers, E. Reichel, J.S. Duker, Redefining lamellar holes and the vitreomacular interface: an ultrahigh-resolution optical coherence tomography study. Ophthalmology 113, 388–397 (2006)Google Scholar
  139. 139.
    M.L. Subramanian, S.N. Truong, A.H. Rogers, J.S. Duker, E. Reichel, C.R. Baumal, Vitrectomy for stage 1 macular holes identified by optical coherence tomography. Ophthalmic Surg. Lasers 37, 42–46 (2006)Google Scholar
  140. 140.
    C.L. Shields, M.A. Materin, J.A. Shields, Review of optical coherence tomography for intraocular tumors. Curr. Opin. Ophthalmol.16, 141–154 (2005)Google Scholar
  141. 141.
    B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, J.F. de Boer, Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization sensitive optical coherence tomography. Invest. Ophthalmol. Visual Sci. 45, 2606–2612 (2004)Google Scholar
  142. 142.
    G. Wollstein, J.S. Schuman, L.L. Price, A. Aydin, P.C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J.G. Fujimoto, L.A. Paunescu, Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch. Ophthalmol. 123, 464–470 (2005)Google Scholar
  143. 143.
    F.A. Medeiros, L.M. Zangwill, C. Bowd, R.M. Vessani, R. Susanna, R.N. Weinreb, Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am. J. Ophthalmol. 139, 44–55 (2005)Google Scholar
  144. 144.
    S.A. Boppart, M.E. Brezinski, J.G. Fujimoto, Optical coherence tomography imaging in developmental biology. Methods Mol. Biol. 135, 217–33 (1999)Google Scholar
  145. 145.
    N. Burris, K. Schwartz, C. Tang, M. Jafri, J. Schmitt, M. Kwon, O. Toshinaga, J. Gu, J. Brown, E. Brown, R. Pierson, R. Poston, Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg. 133(2), 419–27 (2007)Google Scholar
  146. 146.
    P. Testoni, A. Mariani, B. Mangiavillano, P. Arcidiacono, S. Pietro, E. Masci, Intraductal optical coherence tomography for investigating main pancreatic duct strictures. Am. J. Gastroenterol. 101, 1–6 (2006)Google Scholar
  147. 147.
    G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, S.A. Boppart, J.G. Fujimoto, Optical biopsy in human urologic tissue using optical coherence tomography. J. Urol. 157, 1915–1919 (1997)Google Scholar
  148. 148.
    B.A. Boppart, M.E. Brezinski, C. Pitris, J.G. Fujimoto, Optical coherence tomography for neurosurgical imaging of human intracortical melanoma. Neurosurgery 43(4), 834–841 (1998).Google Scholar
  149. 149.
    G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, S. Pitris, J.H. Southern, In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997)Google Scholar
  150. 150.
    S.A. Boppart, J.M. Herrmann, C. Pitris, D.L. Stamper, M.E. Brezinski, J.G. Fujimoto, Real-time optical coherence tomography for minimally-invasive imaging of prostate ablation. Invited Comput. Aid. Surg. 6, 94–103 (2001)Google Scholar
  151. 151.
    C. Mason, J.F. Markusen, M.A. Town, P. Dunnill, R.K. Wang, The potential of optical coherence tomography in the engineering of living tissue. Phys. Med. Biol. 49, 1097–1115 (2004)Google Scholar
  152. 152.
    S.A. Boppart, W. Luo, D.L. Marks, K.W. Singletary, Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Res. Treatment 84, 85–97 (2004)Google Scholar
  153. 153.
    J.P. Dunkers, F.R. Phelan, C.G. Zimba, K.M. Flynn, D.P. Sanders, R.C. Peterson, R.S. Parnas, The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images. Polym. Compos. 22(6), 803 (2001)Google Scholar
  154. 154.
    M.D. Duncan, M. Bashkansky, J. Reintjes, Subsurface defect detection in materials using optical coherence tomography. Opt. Express13, 540–545 (1998)Google Scholar
  155. 155.
    Y. Shin, W. Jung, Z. Chen, J.S. Nelson, H. Kim, J. Park, Investigation of pit formation in multilayer optical storage disk using optical coherence tomography. Proc. SPIE 5604, 38–43 (2004)Google Scholar
  156. 156.
    C. Xi, D.J. Marks, D.S. Parikh, L. Raskin, S.A. Boppart, Structural and functional imaging of three-dimensional microfluidic mixers using optical coherence tomography. Proc. Natl. Acad. Sci. 101, 7516–7521 (2004)Google Scholar
  157. 157.
    B.E. Bouma, S. Yun, B.J. Vakoc, M.J. Suter, G.J. Tearney, Fourier-domain optical coherence tomography: recent advances toward clinical utility. Curr. Opin. Biotechnol. 20(1), 111–118 (2009)Google Scholar
  158. 158.
    D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, K. Ohbayashi, Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s. Opt. Lett.33, 1318–1320 (2008)Google Scholar
  159. 159.
    E. Hitt, New optical coherence tomography allows rapid three-dimensional volume rendering of the retina. Medscape Medical News [online]. Available from: Accessed 9 Jan 2007.
  160. 160.
    W. Drexler, Ultrahigh resolution optical coherence tomography. J. Biomed. Opt. 9, 47–74 (2004)Google Scholar
  161. 161.
    A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, C. Boccara, Ultrahigh-resolution full-field optical coherence tomography. Appl. Opt. 43, 2874–2883 (2004)Google Scholar
  162. 162.
    M. Akiba, N. Maeda, K. Yumikake, T. Soma, K. Nishida, Y. Tano, K.P. Chan, Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography. J. Biomed. Opt.14, 041202 (2007)Google Scholar
  163. 163.
    Y. Watanabe, Y. Takasugi, M. Sato, Quasi-single shot axial-lateral parallel time domain OCT. Opt. Express15, 5208–5217 (2008)Google Scholar
  164. 164.
    C. Dunsby, Y. Gu, P. French, Single-shot phase-stepped wide-field coherence gated imaging. Opt. Express11, 105–115 (2003)Google Scholar
  165. 165.
    T. Man, A.L. Oldenburg, S. Sitafalwalla, D.L. Marks, W. Luo, F.J. Toublan, K.S. Suslick, S.A. Boppart, Engineered microsphere contrast agents for optical coherence tomography. Opt. Lett. 28, 1546–1548 (2003)Google Scholar
  166. 166.
    Y. He, R.K. Wang, Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography. J. Biomed. Opt. 9, 200–206 (2004)Google Scholar
  167. 167.
    D.C. Adler, S.-W. Huang, R. Huber, J.G. Fujimoto, Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Opt. Express 16, 4376–4393 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringOregon Health & Science UniversityPortlandUSA
  2. 2.Department of BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations