Spectral Imaging: Methods, Design, and Applications

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Spectral imaging is a relatively new field in which the advantages of optical spectroscopy as an analytical tool are combined with the power of object visualization as obtained by optical imaging; it creates a three-dimensional data set that contains many images of the same object, where each one of them is measured at a different wavelength. Biomedical applications typically require collection of complex information from tissues with minimal invasion and risk at shorter times and lower costs. This chapter will discuss the principles of spectral imaging, various optical designs, and spectral imaging analysis, while a few of the algorithms will be discussed with emphasis on the usage for different experimental modes. Different methods used for spectral imaging systems will be described as well as their advantages, limitations, and possible applications. In addition, the conceptual parts of a spectral imaging system will be described combined with brief description of the major biomedical applications.


Spectral Range Spectral Resolution Array Detector Charged Couple Device Spectral Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was partially supported by the Israeli Science Foundation (ISF) grants numbers 985/08 and 1729/08.


  1. 1.
    E.H.K. Stelzer, Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy. J. Microsc. 189, 15–24 (1997)Google Scholar
  2. 2.
    I. Newton, Opticks (1704) (Dover Publications, Mineola, 1987)Google Scholar
  3. 3.
    F.M.A. Voltaire, Éléments de la philosophie de Newton (Etienne Ledet & Compagnie, Amsterdam, 1738)Google Scholar
  4. 4.
    A.J. Welch, M.J.C. van Gemert, W.M. Star, B.C. Wilson, In Overview of Tissue Optics, in Optical-Thermal Response of Laser-Irradiated Tissue, ed. by A.J. Welch and M.J.C. van Gemert (Plenum, New York, 1995)Google Scholar
  5. 5.
    J. Yguerabide, E.E. Yguerabide, Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal. Biochem. 262, 137–156 (1998)Google Scholar
  6. 6.
    B.H. Stuart, Infrared spectroscopy: fundamentals and applications. In Analytical Techniques in Science, ed. by D.J. Ando (Wiley, Chichester, 2004)Google Scholar
  7. 7.
    B.N.G. Giepmans, S.R. Adams, M.H. Ellisman, R.Y. Tsien, The fluorescent toolbox for assessing protein location and function. Science, 312, 217–224 (2006)Google Scholar
  8. 8.
    M.E. Dickinson, E. Simbuerger, C.W. Waters, S.E. Fraser, Multiphoton excitation spectra in biological samples. J. Biomed. Opt. 8, 329–338 (2003)Google Scholar
  9. 9.
    W.R. Zipfel, R.M. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003)Google Scholar
  10. 10.
    J. Zimmer, D. Knipp, H. Stiebig, H. Wagner, Amorphous silicon-based unipolar detector for color recognition. IEEE Trans. Electron Dev. 46, 884–891 (1999)Google Scholar
  11. 11.
    R.B. Merrill, Color separation in an active pixel cell imaging array using a triple-well structure, U.S. Patent 5,965,875 (1999)Google Scholar
  12. 12.
    Y. Garini, A. Gil, I. Bar-Am, D. Cabib, N. Katzir, Signal to noise analysis of multiple color fluorescence imaging microscopy. Cytometry, 35, 214–226 (1999)Google Scholar
  13. 13.
    T. Zimmermann, J. Rietdorf, R. Pepperkok, Spectral imaging and its applications in live cell microscopy. FEBS Lett. 546, 87–92 (2003)Google Scholar
  14. 14.
    R. Neher, E. Neher, Optimizing imaging parameters for the separation of multiple labels in a fluorescence image. J. Microsc. 213, 46–62 (2004)Google Scholar
  15. 15.
    T.C. George, D.A. Basiji, B.E. Hall, D.H. Lynch, W.E. Ortyn, D.J. Perry, M.J. Seo, C.A. Zimmerman, P.J. Morrissey, Distinguishing modes of cell death using the imagestream multispectral imaging flow cytometer. Cytometry, 59A, 237–245 (2004)Google Scholar
  16. 16.
    L. Liu, O. Yermolaieva, W.A. Johnson, F.M. Abboud, M.J. Welsh, Identification and function of thermosensory neurons in Drosophila larvae. Nat. Neurosci. 6, 267–273 (2003)Google Scholar
  17. 17.
    H.S. Kwok, P.W. Cheng, H.C. Huang, H.F. Li, Z.R. Zheng, P.F. Gu, X. Liu, Trichroic prism assembly for separating and recombining colors in a compact projection display. Appl. Opt. 39, 168–172 (2000)Google Scholar
  18. 18.
    J. Lane, P. Buchsbaum, J. Eichenholz, Microlithographically patterned optical thin film coatings. Proc. SPIE, 7205, 72050G (2009)Google Scholar
  19. 19.
    J.M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, D.L. Farkas, Real time megapixel multispectral bioimaging. Proc. SPIE, 7568, 75681L (2010)Google Scholar
  20. 20.
    L. Cognet, G.S. Harms, G.A. Blab, P.H.M. Lommerse, T. Schmidt, Simultaneous dual-color and dual-polarization imaging of single molecules. Appl. Phys. Lett. 77, 4052–4054 (2000)Google Scholar
  21. 21.
    C.L. Wyatt, Infrared spectrometer: liquid-helium-cooled rocketborne circular-variable filter. Appl. Opt. 14, 3086–3091 (1975)Google Scholar
  22. 22.
    P.J. Miller, Use of tunable liquid crystal filters to link radiometric and photometric standards. Metrologia, 28, 145–149 (1991)Google Scholar
  23. 23.
    R.D. Shonat, E. Wachman, W. Niu, A. Koretsky, D. Farkas, Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope. Biophys. J. 73, 1223–1231 (1997)Google Scholar
  24. 24.
    X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004)Google Scholar
  25. 25.
    B. Lyot, Optical apparatus with wide field using interference of polarized light. C.R. Acad. Sci. 197, 1593 (1933)Google Scholar
  26. 26.
    G.D. Sharp, K.M. Johnson, D. Doroski, Continuously tunable smectic A* liquid-crystal color filter. Opt. Lett. 15, 523–525 (1990)Google Scholar
  27. 27.
    T. Xu, Y.K. Wu, X. Luo, L.J. Guo, Plasmonic nanoresonators for high-resolution color filtering and spectral imaging. Nat. Commun. 1, 59 (2010)Google Scholar
  28. 28.
    N. Gat, Imaging spectroscopy using tunable filters: a review. Proc. SPIE 4056, 50–64 (2000)Google Scholar
  29. 29.
    C. Palmer, E. Loewen, Diffraction Grating Handbook (Newport Corporation, Rochester, 2005)Google Scholar
  30. 30.
    J.M. Lerner, Imaging spectrometer fundamentals for researchers in the biosciences - A tutorial. Cytometry 69A, 712–734 (2006)Google Scholar
  31. 31.
    M.B. Sinclair, J.A. Timlin, D.M. Haaland, M. Werner-Washburne, Design construction characterization and application of a hyperspectral microarray scanner. Appl. Opt. 43, 2079–2088 (2004)Google Scholar
  32. 32.
    R.S. Balaban, I. Kurtz, H.E. Cascio, P.D. Smith, Microscopic spectral imaging using a video camera. J. Microsc. 141, 31–39 (1986)Google Scholar
  33. 33.
    D.W. Warren, A. Hackwell, Compact prism spectrograph suitable for broadband spectral surveys with array detectors. U.S. Patent No. 5,127,728 (1992)Google Scholar
  34. 34.
    M. Aikio, Hyperspectral Prism-Grating-Prism Imaging Spectrograph(Technical Research Center of Finland, Espoo, 2001)Google Scholar
  35. 35.
    T. Hyvärinen, E. Herrala, A. Dall’Ava, Direct sight imaging spectrograph: a unique add-on component brings spectral imaging to industrial applications. Proc. SPIE 3302, 165–175 (1998)Google Scholar
  36. 36.
    R.M. Zucker, J.M. Lerner, Wavelength and alignment tests for confocal spectral imaging systems. Microsc. Res. Tech. 68, 307–319 (2005)Google Scholar
  37. 37.
    H. Tsurui, J.M. Lerner, K. Takahashi, S. Hirose, K. Mitsui, K. Okumura, T. Shirai, Hyperspectral imaging of pathology samples. Proc. SPIE 3605, 273–281 (1999)Google Scholar
  38. 38.
    M.E. Dickinson, G. Bearman, S. Tille, R. Lansford, S.E. Fraser, Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. BioTechniques, 31, 1272–1278 (2001)Google Scholar
  39. 39.
    Y. Garini, M. Macville, S. du Manoir, R.A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, T. Ried, Spectral karyotyping. Bioimaging 4, 65–72 (1996)Google Scholar
  40. 40.
    Z. Malik, D. Cabib, R.A. Buckwald, A. Talmi, Y. Garini, S.G. Lipson, Fourier transform multi-pixel spectroscopy for quantitative cytology. J. Microsc. 182, 133–140 (1996)Google Scholar
  41. 41.
    R.J. Bell, Introductory Fourier Transform Spectroscopy (Academic Press, London, 1972)Google Scholar
  42. 42.
    Y. Garini, N. Katzir, D. Cabib, R.A. Buckwald, D.G. Soenksen, Z. Malik, Spectral bio-imaging, in Fluorescence Imaging Spectroscopy and Microscopy, ed. by X.F. Wang, B. Herman (Wiley, New York, 1996).Google Scholar
  43. 43.
    J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996)Google Scholar
  44. 44.
    F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE, 66, 51–83 (1978)Google Scholar
  45. 45.
    Q.S. Hanley, P.J. Verveer, D.J. Arndt-Jovin, T.M. Jovin, Three-dimensional spectral imaging by Hadamard transform spectroscopy in a programmable array microscope. J. Microsc. 197, 5–14 (2000)Google Scholar
  46. 46.
    M.R. Descour, C.E. Volin, E.L. Dereniak, T.M. Gleeson, M.F. Hopkins, D.W. Wilson, P.D. Maker, Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser. Appl. Opt. 36, 3694–3698 (1997)Google Scholar
  47. 47.
    T. Okamoto, I. Yamaguchi, Simultaneous acquisition of spectral image information. Opt. Lett. 16, 1277–1279 (1991)Google Scholar
  48. 48.
    C.E. Volin, B.K. Ford, M.R. Descour, J.P. Garcia, D.W. Wilson, P.D. Maker, G.H. Bearman, High-speed spectral imager for imaging transient fluorescence phenomena. Appl. Opt. 37, 8112–8119 (1998)Google Scholar
  49. 49.
    W.R. Johnson, D.W. Wilson, W. Fink, M. Humayun, G. Bearman, Snapshot hyperspectral imaging in ophthalmology. J. Biomed. Opt. 12, 014036–1–7 (2007)Google Scholar
  50. 50.
    M.E. Gehm, R. John, D.J. Brady, R.M. Willett, T.J. Schulz, Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15, 14013–14027 (2007)Google Scholar
  51. 51.
    M.A. Golub, M. Nathan, A. Averbuch, E. Lavi, V.A. Zheludev, A. Schclar, Spectral multiplexing method for digital snapshot spectral imaging. Appl. Opt. 48, 1520–1526 (2009)Google Scholar
  52. 52.
    N.L. Everdell, I.B. Styles, A. Calcagni, J. Gibson, J. Hebden, E. Claridge, Multispectral imaging of the ocular fundus using light emitting diode illumination. Rev. Sci. Instrum. 81, 093706–1–9 (2010)Google Scholar
  53. 53.
    N. MacKinnon, U. Stange, P. Lane, C. MacAulay, M. Quatrevalet, Spectrally programmable light engine for in vitro or in vivo molecular imaging and spectroscopy. Appl. Opt. 44, 2033–2040 (2005)Google Scholar
  54. 54.
    A. Bednarkiewicz, M. Bouhifd, M.P. Whelan, Digital micromirror device as a spatial illuminator for fluorescence lifetime and hyperspectral imaging. Appl. Opt. 47, 1193–1199 (2008)Google Scholar
  55. 55.
    A. Abramov, L. Minai, D. Yelin, Multiple-channel spectrally encoded imaging. Opt. Express 18, 14745–14751 (2010)Google Scholar
  56. 56.
    D. Yelin, S.H. Yun, B.E. Bouma, G.J. Tearney, Three-dimensional imaging using spectral encoding heterodyne interferometry. Opt. Lett. 30, 1794–1796 (2005)Google Scholar
  57. 57.
    I.T. Young, J.J. Gerbrands, L.J. van Vliet, Image processing fundamentals, in The Digital Signal Processing Handbook, ed. by D.B. Williams, V.K. Madisetti (CRC Press, Boca Raton, 1998)Google Scholar
  58. 58.
    Y. Garini, I.T. Young, G. McNamara, Spectral imaging: principles and applications. Cytometry 69A, 735–747 (2006)Google Scholar
  59. 59.
    T. Zimmermann, Spectral imaging and linear unmixing in light microscopy. Adv. Biochem. Eng./Biotechnol. 95, 245–265 (2005)Google Scholar
  60. 60.
    J.R. Mansfield, K.W. Gossage, C.C. Hoyt, R.M. Levenson, Autofluorescence removal multiplexing and automated analysis methods for in-vivo fluorescence imaging. J. Biomed. Opt. 10, 041207–1–9 (2005)Google Scholar
  61. 61.
    E.A. Jares-Erijman, T.M. Jovin, FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003)Google Scholar
  62. 62.
    C.L. Lawson, R.J. Hanson, Solving Least Square Problems (Prentice-Hall, Englewood Cliffs, 1974)Google Scholar
  63. 63.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy. 3rd edn. (Plenum Press, New York/London, 1986)Google Scholar
  64. 64.
    R. Zhou, E.H. Hammond, D.L. Parker, A multiple wavelength algorithm in color image analysis and its applications in stain decomposition in microscopy images. Med. Phys. 23, 1977–1986 (1996)Google Scholar
  65. 65.
    R.L. Ornberg, B.M. Woerner, D.A. Edwards, Analysis of stained objects in histological sections by spectral imaging and differential absorption. J. Histochem. Cytochem. 47, 1307–1314 (1999)Google Scholar
  66. 66.
    M.V. Macville, J.A. Van Der Laak, E.J. Speel, N. Katzir, Y. Garini, D. Soenksen, G. McNamara, P.C. de Wilde, A.G. Hanselaar, A.H. Hopman, T. Ried, Spectral imaging of multi-color chromogenic dyes in pathological specimens. Anal. Cell. Pathol. 22, 133–142 (2001)Google Scholar
  67. 67.
    I.T. Jolliffe, Principle Component Analysis, 2nd edn. Springer series in statistics (Springer, New York, 2002)Google Scholar
  68. 68.
    E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M.A. Ferguson-Smith, Y. Ning, D.H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Ried, Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 (1996)Google Scholar
  69. 69.
    E. Schröck, H. Padilla-Nash, Spectral karyotyping and multicolor fluorescence in situ hybridization reveal new tumor-specific chromosomal aberrations. Seminal Hematol. 37, 334–347 (2000)Google Scholar
  70. 70.
    M.R. Speicher, S. Gwyn Ballard, D.C. Ward, Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 12, 368–375 (1996)Google Scholar
  71. 71.
    H.J. Tanke, J. Wiegant, R.P. van Gijlswijk, V. Bezrookove, H. Pattenier, R. J. Heetebrij, E.G. Talman, A.K. Raap, J. Vrolijk, New strategy for multi-color fluorescence in situ hybridisation: COBRA: Combined Binary RAtio labeling. Eur. J. Hum. Genet. 7, 2–11 (1999)Google Scholar
  72. 72.
    H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, T. Shirai, Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition. J. Histochem. Cytochem. 48, 653–662 (2000)Google Scholar
  73. 73.
    C. Pautke, S. Vogt, T. Tischer, G. Wexel, H. Deppe, S. Milz, M. Schieker, A. Kolk, Polychrome labeling of bone with seven different fluorochromes: Enhancing fluorochrome discrimination by spectral image analysis. Bone 37, 441–445 (2005)Google Scholar
  74. 74.
    R.C. Ecker, R.D. Martin, G.E. Steiner, J.A. Schmid, Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis. Cytometry 59A, 172–181 (2004)Google Scholar
  75. 75.
    A. Mittag, D. Lenz, A.O.H. Gerstner, U. Sack, M. Steinbrecher, M. Koksch, A. Raffael, J. Bocsi, A. Tárnok, Polychromatic (eight-color) slide-based cytometry for the phenotyping of leukocyte NK and NKT subsets. Cytometry 65A, 103–115 (2005)Google Scholar
  76. 76.
    R. Levenson, J.R. Mansfield, Multispectral imaging in biology and medicine: slices of life. Cytometry 69A, 748–758 (2006)Google Scholar
  77. 77.
    M. Elias, P. Cotte, Multispectral camera and radiative transfer equation used to depict Leonardo’s sfumato in Mona Lisa. Appl. Opt. 47, 2146–2154 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Physics Department and Nanotechnology InstituteBar Ilan UniversityRamat GanIsrael

Personalised recommendations