Skip to main content

Spectral Imaging: Methods, Design, and Applications

  • Chapter
  • First Online:
Biomedical Optical Imaging Technologies

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Spectral imaging is a relatively new field in which the advantages of optical spectroscopy as an analytical tool are combined with the power of object visualization as obtained by optical imaging; it creates a three-dimensional data set that contains many images of the same object, where each one of them is measured at a different wavelength. Biomedical applications typically require collection of complex information from tissues with minimal invasion and risk at shorter times and lower costs. This chapter will discuss the principles of spectral imaging, various optical designs, and spectral imaging analysis, while a few of the algorithms will be discussed with emphasis on the usage for different experimental modes. Different methods used for spectral imaging systems will be described as well as their advantages, limitations, and possible applications. In addition, the conceptual parts of a spectral imaging system will be described combined with brief description of the major biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.H.K. Stelzer, Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy. J. Microsc. 189, 15–24 (1997)

    Google Scholar 

  2. I. Newton, Opticks (1704) (Dover Publications, Mineola, 1987)

    Google Scholar 

  3. F.M.A. Voltaire, Éléments de la philosophie de Newton (Etienne Ledet & Compagnie, Amsterdam, 1738)

    Google Scholar 

  4. A.J. Welch, M.J.C. van Gemert, W.M. Star, B.C. Wilson, In Overview of Tissue Optics, in Optical-Thermal Response of Laser-Irradiated Tissue, ed. by A.J. Welch and M.J.C. van Gemert (Plenum, New York, 1995)

    Google Scholar 

  5. J. Yguerabide, E.E. Yguerabide, Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal. Biochem. 262, 137–156 (1998)

    Google Scholar 

  6. B.H. Stuart, Infrared spectroscopy: fundamentals and applications. In Analytical Techniques in Science, ed. by D.J. Ando (Wiley, Chichester, 2004)

    Google Scholar 

  7. B.N.G. Giepmans, S.R. Adams, M.H. Ellisman, R.Y. Tsien, The fluorescent toolbox for assessing protein location and function. Science, 312, 217–224 (2006)

    Google Scholar 

  8. M.E. Dickinson, E. Simbuerger, C.W. Waters, S.E. Fraser, Multiphoton excitation spectra in biological samples. J. Biomed. Opt. 8, 329–338 (2003)

    Google Scholar 

  9. W.R. Zipfel, R.M. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003)

    Google Scholar 

  10. J. Zimmer, D. Knipp, H. Stiebig, H. Wagner, Amorphous silicon-based unipolar detector for color recognition. IEEE Trans. Electron Dev. 46, 884–891 (1999)

    Google Scholar 

  11. R.B. Merrill, Color separation in an active pixel cell imaging array using a triple-well structure, U.S. Patent 5,965,875 (1999)

    Google Scholar 

  12. Y. Garini, A. Gil, I. Bar-Am, D. Cabib, N. Katzir, Signal to noise analysis of multiple color fluorescence imaging microscopy. Cytometry, 35, 214–226 (1999)

    Google Scholar 

  13. T. Zimmermann, J. Rietdorf, R. Pepperkok, Spectral imaging and its applications in live cell microscopy. FEBS Lett. 546, 87–92 (2003)

    Google Scholar 

  14. R. Neher, E. Neher, Optimizing imaging parameters for the separation of multiple labels in a fluorescence image. J. Microsc. 213, 46–62 (2004)

    Google Scholar 

  15. T.C. George, D.A. Basiji, B.E. Hall, D.H. Lynch, W.E. Ortyn, D.J. Perry, M.J. Seo, C.A. Zimmerman, P.J. Morrissey, Distinguishing modes of cell death using the imagestream multispectral imaging flow cytometer. Cytometry, 59A, 237–245 (2004)

    Google Scholar 

  16. L. Liu, O. Yermolaieva, W.A. Johnson, F.M. Abboud, M.J. Welsh, Identification and function of thermosensory neurons in Drosophila larvae. Nat. Neurosci. 6, 267–273 (2003)

    Google Scholar 

  17. H.S. Kwok, P.W. Cheng, H.C. Huang, H.F. Li, Z.R. Zheng, P.F. Gu, X. Liu, Trichroic prism assembly for separating and recombining colors in a compact projection display. Appl. Opt. 39, 168–172 (2000)

    Google Scholar 

  18. J. Lane, P. Buchsbaum, J. Eichenholz, Microlithographically patterned optical thin film coatings. Proc. SPIE, 7205, 72050G (2009)

    Google Scholar 

  19. J.M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, D.L. Farkas, Real time megapixel multispectral bioimaging. Proc. SPIE, 7568, 75681L (2010)

    Google Scholar 

  20. L. Cognet, G.S. Harms, G.A. Blab, P.H.M. Lommerse, T. Schmidt, Simultaneous dual-color and dual-polarization imaging of single molecules. Appl. Phys. Lett. 77, 4052–4054 (2000)

    Google Scholar 

  21. C.L. Wyatt, Infrared spectrometer: liquid-helium-cooled rocketborne circular-variable filter. Appl. Opt. 14, 3086–3091 (1975)

    Google Scholar 

  22. P.J. Miller, Use of tunable liquid crystal filters to link radiometric and photometric standards. Metrologia, 28, 145–149 (1991)

    Google Scholar 

  23. R.D. Shonat, E. Wachman, W. Niu, A. Koretsky, D. Farkas, Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope. Biophys. J. 73, 1223–1231 (1997)

    Google Scholar 

  24. X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004)

    Google Scholar 

  25. B. Lyot, Optical apparatus with wide field using interference of polarized light. C.R. Acad. Sci. 197, 1593 (1933)

    Google Scholar 

  26. G.D. Sharp, K.M. Johnson, D. Doroski, Continuously tunable smectic A* liquid-crystal color filter. Opt. Lett. 15, 523–525 (1990)

    Google Scholar 

  27. T. Xu, Y.K. Wu, X. Luo, L.J. Guo, Plasmonic nanoresonators for high-resolution color filtering and spectral imaging. Nat. Commun. 1, 59 (2010)

    Google Scholar 

  28. N. Gat, Imaging spectroscopy using tunable filters: a review. Proc. SPIE 4056, 50–64 (2000)

    Google Scholar 

  29. C. Palmer, E. Loewen, Diffraction Grating Handbook (Newport Corporation, Rochester, 2005)

    Google Scholar 

  30. J.M. Lerner, Imaging spectrometer fundamentals for researchers in the biosciences - A tutorial. Cytometry 69A, 712–734 (2006)

    Google Scholar 

  31. M.B. Sinclair, J.A. Timlin, D.M. Haaland, M. Werner-Washburne, Design construction characterization and application of a hyperspectral microarray scanner. Appl. Opt. 43, 2079–2088 (2004)

    Google Scholar 

  32. R.S. Balaban, I. Kurtz, H.E. Cascio, P.D. Smith, Microscopic spectral imaging using a video camera. J. Microsc. 141, 31–39 (1986)

    Google Scholar 

  33. D.W. Warren, A. Hackwell, Compact prism spectrograph suitable for broadband spectral surveys with array detectors. U.S. Patent No. 5,127,728 (1992)

    Google Scholar 

  34. M. Aikio, Hyperspectral Prism-Grating-Prism Imaging Spectrograph(Technical Research Center of Finland, Espoo, 2001)

    Google Scholar 

  35. T. Hyvärinen, E. Herrala, A. Dall’Ava, Direct sight imaging spectrograph: a unique add-on component brings spectral imaging to industrial applications. Proc. SPIE 3302, 165–175 (1998)

    Google Scholar 

  36. R.M. Zucker, J.M. Lerner, Wavelength and alignment tests for confocal spectral imaging systems. Microsc. Res. Tech. 68, 307–319 (2005)

    Google Scholar 

  37. H. Tsurui, J.M. Lerner, K. Takahashi, S. Hirose, K. Mitsui, K. Okumura, T. Shirai, Hyperspectral imaging of pathology samples. Proc. SPIE 3605, 273–281 (1999)

    Google Scholar 

  38. M.E. Dickinson, G. Bearman, S. Tille, R. Lansford, S.E. Fraser, Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. BioTechniques, 31, 1272–1278 (2001)

    Google Scholar 

  39. Y. Garini, M. Macville, S. du Manoir, R.A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schröck, D. Cabib, T. Ried, Spectral karyotyping. Bioimaging 4, 65–72 (1996)

    Google Scholar 

  40. Z. Malik, D. Cabib, R.A. Buckwald, A. Talmi, Y. Garini, S.G. Lipson, Fourier transform multi-pixel spectroscopy for quantitative cytology. J. Microsc. 182, 133–140 (1996)

    Google Scholar 

  41. R.J. Bell, Introductory Fourier Transform Spectroscopy (Academic Press, London, 1972)

    Google Scholar 

  42. Y. Garini, N. Katzir, D. Cabib, R.A. Buckwald, D.G. Soenksen, Z. Malik, Spectral bio-imaging, in Fluorescence Imaging Spectroscopy and Microscopy, ed. by X.F. Wang, B. Herman (Wiley, New York, 1996).

    Google Scholar 

  43. J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996)

    Google Scholar 

  44. F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE, 66, 51–83 (1978)

    Google Scholar 

  45. Q.S. Hanley, P.J. Verveer, D.J. Arndt-Jovin, T.M. Jovin, Three-dimensional spectral imaging by Hadamard transform spectroscopy in a programmable array microscope. J. Microsc. 197, 5–14 (2000)

    Google Scholar 

  46. M.R. Descour, C.E. Volin, E.L. Dereniak, T.M. Gleeson, M.F. Hopkins, D.W. Wilson, P.D. Maker, Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser. Appl. Opt. 36, 3694–3698 (1997)

    Google Scholar 

  47. T. Okamoto, I. Yamaguchi, Simultaneous acquisition of spectral image information. Opt. Lett. 16, 1277–1279 (1991)

    Google Scholar 

  48. C.E. Volin, B.K. Ford, M.R. Descour, J.P. Garcia, D.W. Wilson, P.D. Maker, G.H. Bearman, High-speed spectral imager for imaging transient fluorescence phenomena. Appl. Opt. 37, 8112–8119 (1998)

    Google Scholar 

  49. W.R. Johnson, D.W. Wilson, W. Fink, M. Humayun, G. Bearman, Snapshot hyperspectral imaging in ophthalmology. J. Biomed. Opt. 12, 014036–1–7 (2007)

    Google Scholar 

  50. M.E. Gehm, R. John, D.J. Brady, R.M. Willett, T.J. Schulz, Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15, 14013–14027 (2007)

    Google Scholar 

  51. M.A. Golub, M. Nathan, A. Averbuch, E. Lavi, V.A. Zheludev, A. Schclar, Spectral multiplexing method for digital snapshot spectral imaging. Appl. Opt. 48, 1520–1526 (2009)

    Google Scholar 

  52. N.L. Everdell, I.B. Styles, A. Calcagni, J. Gibson, J. Hebden, E. Claridge, Multispectral imaging of the ocular fundus using light emitting diode illumination. Rev. Sci. Instrum. 81, 093706–1–9 (2010)

    Google Scholar 

  53. N. MacKinnon, U. Stange, P. Lane, C. MacAulay, M. Quatrevalet, Spectrally programmable light engine for in vitro or in vivo molecular imaging and spectroscopy. Appl. Opt. 44, 2033–2040 (2005)

    Google Scholar 

  54. A. Bednarkiewicz, M. Bouhifd, M.P. Whelan, Digital micromirror device as a spatial illuminator for fluorescence lifetime and hyperspectral imaging. Appl. Opt. 47, 1193–1199 (2008)

    Google Scholar 

  55. A. Abramov, L. Minai, D. Yelin, Multiple-channel spectrally encoded imaging. Opt. Express 18, 14745–14751 (2010)

    Google Scholar 

  56. D. Yelin, S.H. Yun, B.E. Bouma, G.J. Tearney, Three-dimensional imaging using spectral encoding heterodyne interferometry. Opt. Lett. 30, 1794–1796 (2005)

    Google Scholar 

  57. I.T. Young, J.J. Gerbrands, L.J. van Vliet, Image processing fundamentals, in The Digital Signal Processing Handbook, ed. by D.B. Williams, V.K. Madisetti (CRC Press, Boca Raton, 1998)

    Google Scholar 

  58. Y. Garini, I.T. Young, G. McNamara, Spectral imaging: principles and applications. Cytometry 69A, 735–747 (2006)

    Google Scholar 

  59. T. Zimmermann, Spectral imaging and linear unmixing in light microscopy. Adv. Biochem. Eng./Biotechnol. 95, 245–265 (2005)

    Google Scholar 

  60. J.R. Mansfield, K.W. Gossage, C.C. Hoyt, R.M. Levenson, Autofluorescence removal multiplexing and automated analysis methods for in-vivo fluorescence imaging. J. Biomed. Opt. 10, 041207–1–9 (2005)

    Google Scholar 

  61. E.A. Jares-Erijman, T.M. Jovin, FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003)

    Google Scholar 

  62. C.L. Lawson, R.J. Hanson, Solving Least Square Problems (Prentice-Hall, Englewood Cliffs, 1974)

    Google Scholar 

  63. J.R. Lakowicz, Principles of Fluorescence Spectroscopy. 3rd edn. (Plenum Press, New York/London, 1986)

    Google Scholar 

  64. R. Zhou, E.H. Hammond, D.L. Parker, A multiple wavelength algorithm in color image analysis and its applications in stain decomposition in microscopy images. Med. Phys. 23, 1977–1986 (1996)

    Google Scholar 

  65. R.L. Ornberg, B.M. Woerner, D.A. Edwards, Analysis of stained objects in histological sections by spectral imaging and differential absorption. J. Histochem. Cytochem. 47, 1307–1314 (1999)

    Google Scholar 

  66. M.V. Macville, J.A. Van Der Laak, E.J. Speel, N. Katzir, Y. Garini, D. Soenksen, G. McNamara, P.C. de Wilde, A.G. Hanselaar, A.H. Hopman, T. Ried, Spectral imaging of multi-color chromogenic dyes in pathological specimens. Anal. Cell. Pathol. 22, 133–142 (2001)

    Google Scholar 

  67. I.T. Jolliffe, Principle Component Analysis, 2nd edn. Springer series in statistics (Springer, New York, 2002)

    Google Scholar 

  68. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M.A. Ferguson-Smith, Y. Ning, D.H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Ried, Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 (1996)

    Google Scholar 

  69. E. Schröck, H. Padilla-Nash, Spectral karyotyping and multicolor fluorescence in situ hybridization reveal new tumor-specific chromosomal aberrations. Seminal Hematol. 37, 334–347 (2000)

    Google Scholar 

  70. M.R. Speicher, S. Gwyn Ballard, D.C. Ward, Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 12, 368–375 (1996)

    Google Scholar 

  71. H.J. Tanke, J. Wiegant, R.P. van Gijlswijk, V. Bezrookove, H. Pattenier, R. J. Heetebrij, E.G. Talman, A.K. Raap, J. Vrolijk, New strategy for multi-color fluorescence in situ hybridisation: COBRA: Combined Binary RAtio labeling. Eur. J. Hum. Genet. 7, 2–11 (1999)

    Google Scholar 

  72. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, T. Shirai, Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition. J. Histochem. Cytochem. 48, 653–662 (2000)

    Google Scholar 

  73. C. Pautke, S. Vogt, T. Tischer, G. Wexel, H. Deppe, S. Milz, M. Schieker, A. Kolk, Polychrome labeling of bone with seven different fluorochromes: Enhancing fluorochrome discrimination by spectral image analysis. Bone 37, 441–445 (2005)

    Google Scholar 

  74. R.C. Ecker, R.D. Martin, G.E. Steiner, J.A. Schmid, Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis. Cytometry 59A, 172–181 (2004)

    Google Scholar 

  75. A. Mittag, D. Lenz, A.O.H. Gerstner, U. Sack, M. Steinbrecher, M. Koksch, A. Raffael, J. Bocsi, A. Tárnok, Polychromatic (eight-color) slide-based cytometry for the phenotyping of leukocyte NK and NKT subsets. Cytometry 65A, 103–115 (2005)

    Google Scholar 

  76. R. Levenson, J.R. Mansfield, Multispectral imaging in biology and medicine: slices of life. Cytometry 69A, 748–758 (2006)

    Google Scholar 

  77. M. Elias, P. Cotte, Multispectral camera and radiative transfer equation used to depict Leonardo’s sfumato in Mona Lisa. Appl. Opt. 47, 2146–2154 (2008)

    Google Scholar 

Download references

Acknowledgements

The work was partially supported by the Israeli Science Foundation (ISF) grants numbers 985/08 and 1729/08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Garini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garini, Y., Tauber, E. (2013). Spectral Imaging: Methods, Design, and Applications. In: Liang, R. (eds) Biomedical Optical Imaging Technologies. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28391-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28391-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28390-1

  • Online ISBN: 978-3-642-28391-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics