Advertisement

Three-Dimensional Optical-Resolution Photoacoustic Microscopy

Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Three-dimensional optical-resolution photoacoustic microscopy (OR-PAM), an emerging optical-acoustic hybrid technology capable of imaging optical absorption contrasts with subcellular resolution and sensitivity, has been recognized as a valuable complement to existing optical microscopy technologies. In this chapter, we provide detailed discussion on the design and operation of OR-PAM, including the principle, system design, system configuration, system alignment, experimental procedures, laser safety, functional imaging scheme, recent technical advances, and sample biomedical applications. Future directions of OR-PAM development are also discussed at the end of this chapter.

Keywords

Optical Coherence Tomography Ultrasonic Transducer Photoacoustic Signal System Alignment American National Standard Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was sponsored by National Institutes of Health Grants R01 EB000712, EB000712A2S1, R01 EB00071207S2, R01 EB008085, R01 CA113453901, U54 CA136398, and 5P60 DK02057933. Professor Lihong V. Wang has a financial interest in Microphotoacoustics, Inc. and Endra, Inc., which, however, did not support this work.

References

  1. 1.
    S. Hu, L.V. Wang, Photoacoustic imaging and characterization of the microvasculature. J. Biomed. Opt. 15, 011101(2010)Google Scholar
  2. 2.
    L.V. Wang, H. Wu, Biomedical Optics: Principles and Imaging. (Wiley, Hoboken, 2007)Google Scholar
  3. 3.
    X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, L.V. Wang, Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21, 803–806 (2003)Google Scholar
  4. 4.
    K. Maslov, G. Stoica, L.V. Wang, In vivo dark-field reflection-mode photoacoustic microscopy. Opt. Lett. 30, 625–627 (2005)Google Scholar
  5. 5.
    H.F. Zhang, K. Maslov, G. Stoica, L.V. Wang, Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006)Google Scholar
  6. 6.
    K. Maslov, H.F. Zhang, S. Hu, L.V. Wang, Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 33, 929–931 (2008)Google Scholar
  7. 7.
    K. Maslov, G. Ku, L.V. Wang, Photoacoustic microscopy with submicron resolution. Proc. SPIE 7564, 75640W (2010)Google Scholar
  8. 8.
    S. Hu, K. Maslov, V. Tsytsarev, L.V. Wang, Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J. Biomed. Opt. 14, 040503 (2009)Google Scholar
  9. 9.
    S. Hu, K. Maslov, L.V. Wang, In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy. Med. Phys. 36, 2320–2323 (2009)Google Scholar
  10. 10.
    S. Hu, K. Maslov, L.V. Wang, Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy. Opt. Express 17, 7688–7693 (2009)Google Scholar
  11. 11.
    S. Hu, B. Rao, K. Maslov, L.V. Wang, Label-free photoacoustic ophthalmic angiography. Opt. Lett. 35, 1–3 (2010)Google Scholar
  12. 12.
    S. Hu, L.V. Wang, Neurovascular photoacoustic tomography. Front. Neuroenerg. 2, doi:10.3389/fnene.2010.00010 (2010)Google Scholar
  13. 13.
    S. Hu, P. Yan, K. Maslov, J.M. Lee, L.V. Wang, Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy. Opt. Lett. 34, 3899–3901 (2009)Google Scholar
  14. 14.
    S.L. Jiao, M.S. Jiang, J.M. Hu, A. Fawzi, Q. Zhou, K.K. Shung, C.A. Puliafito, H.F. Zhang, Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt. Express, 18, 3967–3972 (2010)Google Scholar
  15. 15.
    J.J. Yao, K.I. Maslov, Y.F. Shi, L.A. Taber, L.V. Wang, In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt. Lett. 35, 1419–1421 (2010)Google Scholar
  16. 16.
    S. Hu, K. Maslov, L.V. Wang, Optical-resolution photoacoustic microscopy for in vivo imaging of microvasculature. Tuchin, V. V. (Ed.), Handbook of Photonics for Biomedical Science (CRC Press, 2010)Google Scholar
  17. 17.
    E.W. Stein, K. Maslov, L.V. Wang, Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy. Proc. SPIE 6856, 68561J (2008)Google Scholar
  18. 18.
    K. Maslov, H.F. Zhang, S. Hu, L.V. Wang, Optical-resolution confocal photoacoustic microscopy. Proc. SPIE 6856, 68561I (2008)Google Scholar
  19. 19.
    H.F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, L.V. Wang, Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl. Phys. Lett. 90, 3 (2007)Google Scholar
  20. 20.
  21. 21.
    H. Fang, K. Maslov, L.V. Wang, Photoacoustic Doppler effect from flowing small light-absorbing particles. Phys. Rev. Lett. 99, 184501 (2007)Google Scholar
  22. 22.
    H. Fang, K. Maslov, L.V. Wang, Photoacoustic Doppler flow measurement in optically scattering media. Appl. Phys. Lett. 91, 3 (2007)Google Scholar
  23. 23.
    H. Fang, L.V. Wang, M-mode photoacoustic particle flow imaging. Opt. Lett. 34, 671–673 (2009)Google Scholar
  24. 24.
    J. Yao, L.V. Wang, Transverse flow imaging based on photoacoustic Doppler bandwidth broadening. J. Biomed. Opt. 15, 021303 (2010)Google Scholar
  25. 25.
    American National Standards Institute Inc., New York, NY (2007)Google Scholar
  26. 26.
    Z. Xie, S. Jiao, H.F. Zhang, C.A. Puliafito, Laser-scanning optical-resolution photoacoustic microscopy. Opt. Lett. 34, 1771–1773 (2009)Google Scholar
  27. 27.
    B. Rao, L. Li, K. Maslov, L.V. Wang, Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging. Opt Lett, 35, 1521–1523 (2010)Google Scholar
  28. 28.
    L. Li, K. Maslov, G. Ku, L.V. Wang, Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies. Opt. Express 17, 16450–16455 (2009)Google Scholar
  29. 29.
    S. Jiao, Z. Xie, H.F. Zhang, C.A. Puliafito, Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography. Opt. Lett. 34, 2961–2963(2009)Google Scholar
  30. 30.
    Y. Wang, K. Maslov, C. Kim, S. Hu, L.V. Wang, Integrated photoacoustic and fluorescence confocal microscopy. IEEE Trans. Biomed. Eng. 57(10), 2576–2578 (2010)Google Scholar
  31. 31.
    S. Hu, J. Yao, K. Maslov, L.V. Ang, S. Oladipupo, A.C. Santeford, J. Kovalski, J.M. Arbeit, Optical-resolution photoacoustic microscopy of angiogenesis in a transgenic mouse model. Proc. SPIE 7564, 756406 (2010)Google Scholar
  32. 32.
    A.F. Falabella, R.S. Kirsner, Wound Healing (Talyor & Francis, Boca Raton, 2005)Google Scholar
  33. 33.
    T. Harrison, J.C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, R.Z. Zemp, Combined photoacoustic and ultrasound biomicroscopy. Opt. Express 17, 22041–22046 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Optical Imaging Laboratory, Department of Biomedical EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations