Multimodal Diffuse Optical Imaging

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Diffuse optical imaging, particularly diffuse optical tomography (DOT), is an emerging clinical modality capable of providing unique functional information, at a relatively low cost, and with nonionizing radiation. Multimodal diffuse optical imaging has enabled a synergistic combination of functional and anatomical information: the quality of DOT reconstructions has been significantly improved by incorporating the structural information derived by the combined anatomical modality. In this chapter, we will review the basic principles of diffuse optical imaging, including instrumentation and reconstruction algorithm design. We will also discuss the approaches for multimodal imaging strategies that integrate DOI with clinically established modalities. The merit of the multimodal imaging approaches is demonstrated in the context of optical mammography, but the techniques described herein can be translated to other clinical scenarios such as brain functional imaging or muscle functional imaging.


Optical Imaging Digital Breast Tomosynthesis Optical Reconstruction Diffuse Optical Tomography Optical Imaging System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, M.S. Feld, Polarized light scattering spectroscopy for quantitative measurement of epithelial structures in situ. IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999)Google Scholar
  2. 2.
    J. Beuthan, O. Minet, J. Helfman, G. Muller, The spatial variation of the refractive index in biological cells. Phys. Med. Biol. 41, 369–382 (1996)Google Scholar
  3. 3.
    B. Beauvoit, S.M. Evans, T.W. Jenkins, E.E. Miller, B. Chance, Correlation between the light scattering and the mitochondrial content of normal tissues and transplantable rodent tumors. Anal. Biochem. 226, 167–174 (1995)Google Scholar
  4. 4.
    V. Backman, M.B. Wallace, L.T. Perelman, J.T. Arendt, R. Gurjar, M.G. Muller, Detection of pre-invasive cancer cells. Nature 406, 35–36 (2000)Google Scholar
  5. 5.
    J.R. Lackowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic-Plenum Publ., New York, 1999)Google Scholar
  6. 6.
    M.A. Mycek, B.W. Pogue, Handbook of Biomedical Fluorescence (CRC Press LLC, Boca Raton, 2003)Google Scholar
  7. 7.
    R. Benson, H. Kues, Fluorescence properties of indocyanine green as related to angiography. Phys. Med. Biol. 23, 159–163 (1978)Google Scholar
  8. 8.
    R. Branch, J. James, A. Read, The clearance of antipyrine and indocyanine green in normal subjects and in patients with chronic liver disease. Clin. Pharmacol. Ther. 20, 81–89 (1976)Google Scholar
  9. 9.
    C. Niemann, T. Henthorn, T. Krejcie, C. Shanks, C. Enders-Klein, M. Avram, Indocyanine green kinetics characterize blood volume and flow distribution and their alteration by propanolol. Clin. Pharm. Ther. 67, 342–350 (2000)Google Scholar
  10. 10.
    J. Chen and X. Intes, Comparison of Monte Carlo Methods for Fluorescence Molecular Tomography - Computational Efficiency. Medical Physics 38(10), 5788–5798 (2011)Google Scholar
  11. 11.
    M. Cutler, Transillumination as an aid in the diagnosis of breast lesions. Surg. Gynecol. Obstet. 48, 721–728 (1929)Google Scholar
  12. 12.
    C.M. Gros, Y. Quenneville, Y. Hummel, Diaphanologic mammaire. J. Radiol. Electrol. Med. Nucl. 53, 297 (1972)Google Scholar
  13. 13.
    A.E. Profio, O.W. Sartorius, G.A. Navarro, Scientific basis of breast diaphanography. Med. Phys. 16, 60–65 (1989)Google Scholar
  14. 14.
    E. Carlsen, Diagnostic Imaging (Spectrascan, S. Windsor, 1982)Google Scholar
  15. 15.
    J.C. Hebden, S.R. Arridge, D.T. Delpy, Optical imaging in medicine: I. Experimental techniques. Phys. Med. Biol. 42, 825–840 (1997)Google Scholar
  16. 16.
    A.P. Gibson, J.C. Hebden, S.R. Arridge, Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005)Google Scholar
  17. 17.
    R. Bright, in Disease of the Brain and Nervous System. vol. 2431 (Longman, London, 1831)Google Scholar
  18. 18.
    T.B. Curling, A practical treatise on the diseases of the testis and the spermatic cord and Scrotum (Samule Hihgley, London, 1843), pp. 125–181Google Scholar
  19. 19.
    G.F. Knoll, Radiation Detection and Measurements, 3rd edn. (Wiley Text Books, Wiley, New York, 1999)Google Scholar
  20. 20.
    S.R. Arridge, W.R.B. Lionheart, Nonuniqueness in diffusion-based optical tomography. Opt. Lett. 23, 882–884 (1998)Google Scholar
  21. 21.
    A. Corlu, T. Durduran, R. Choe, M. Schweiger, E.M.C. Hillman, S.R. Arridge, A.G. Yodh, Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography. Opt. Lett. 28, 2339–2431 (2003)Google Scholar
  22. 22.
    D.A. Boas, T. Gaudette, S.R. Arridge, Simultaneous imaging and optode calibration with diffuse optical tomography. Opt. Express 8, 263–273 (2001)Google Scholar
  23. 23.
    X. Intes, J. Ripoll, T. Kitai, Y. Chen, S. Nioka, A.G. Yodh, B. Chance, CW-optical breast imaging enhanced with Indocyanine green. Med. Phys. 30, 1039–1047 (2003)Google Scholar
  24. 24.
    Y. Yao, Y. Wang, Y. Pei, W. Zhu, R.L. Barbour, Frequency domain optical imaging of absorption and scattering distributions by a Born iterative method. JOSA A 14, 325–342 (1997)Google Scholar
  25. 25.
    X. Intes, B. Chance, Multi-frequency diffuse optical tomography. J. Modern Opt. 52, 2139–2159 (2005)Google Scholar
  26. 26.
    B. Chance, M. Cope, E. Gratton, N. Ramirez, B.J. Tromberg, Phase measurement of light absorption and scatter in human tissue. Rev. Sci. Instrum. 69, 3457–3481 (1998)Google Scholar
  27. 27.
    M. Kaschke, H. Jess, G. Gaida, J.M. Kaltenbach, W. Wrobel, Transillumination imaging of tissue by phase modulation techniques. Proc. OSA Adv. Opt. Imaging Photon Migration 21, 88–92 (1994)Google Scholar
  28. 28.
    K.T. Moesta, H. Kaisers, S. Fantini, M. Tonnies, M. Kaschke, P.M. Schlag, Lasermammografie der Brustdruse-Sensitivitatssteigerung durch Hochfrequenzmodulation. Langenbecks Arch. Chir. Suppl. 1, 543–548 (1996)Google Scholar
  29. 29.
    L. Gotz, S.H. Heywang-Kobrunner, O. Schutz, H. Siebold, Optische mammographie an praoperativen patientinnen. Akt. Radiol. 8, 31–33 (1998)Google Scholar
  30. 30.
    M.A. Franceschini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Mantulin, M. Seeber, P.M. Schlag, M. Kaschke, Frequency-domain techniques enhance optical mammography: initial clinical results. Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997)Google Scholar
  31. 31.
    S. Fantini, S.A. Walker, M.A. Franceschini, M. Kaschke, P.M. Schlag, K.T. Moesta, Assessment of the size, position and optical properties of breast tumors in vivo by noninvasive optical methods. Appl. Opt. 37, 1982–1989 (1998)Google Scholar
  32. 32.
    T.O. Mcbride, B.W. Pogue, S. Jiang, U.L. Osterberg, K.D. Paulsen, A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo. Rev. Sci. Instrum. 72, 1817–1824 (2001)Google Scholar
  33. 33.
    J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A.G. Yodh, Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med. Phys. 30, 235–247 (2003)Google Scholar
  34. 34.
    A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S.R. Arridge, E.M. C. Hillman, A.G. Yodh, Diffuse optical tomography with spectral constraints and wavelength optimization. Appl. Opt. 44, 2082–2093 (2005)Google Scholar
  35. 35.
    J.C. Hebden, S.R. Arridge, D.T. Delpy, Optical imaging in medicine: I. Experimental techniques. Phys. Med. Biol. 42, 825–840 (1997)Google Scholar
  36. 36.
    M. Schweiger, S.R. Arridge, Application of temporal filters to time-resolved data in optical tomography. Phys. Med. Biol. 44, 1699–1717 (1999)Google Scholar
  37. 37.
    D. Grosenick, H. Wabnitz, H.H. Rinneberg, K.T. Moesta, P.M. Schlag, Development of a time-domain optical mammograph and first in vivo applications. Appl. Opt. 38, 2927–2943 (1999)Google Scholar
  38. 38.
    A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, Four-wavelength time-resolved optical mammography in the 680–980 nm range. Opt. Lett. 28, 1138–1140 (2003)Google Scholar
  39. 39.
    X. Intes, Time-domain optical mammography initial results. Acad. Radiol. 12, 934–947 (2005)Google Scholar
  40. 40.
    F.E.W. Schmidt, M.E. Fry, E.M.C. Hillman, J.C. Hebden, D.T. Delpy, A 32-channel time-resolved instrument for medical optical tomography. Rev. Sci. Instrum. 71, 256–265 (2000)Google Scholar
  41. 41.
    X. Intes, J. Yu, A.G. Yodh, B. Chance, Development and evaluation of a multi wavelength – multi channel time resolved optical instrument for NIR/MRI mammography co-registration, in IEEE – EMBS NEBE 2002: Defining the Future for Biomedical Engineering, Philadelphia (2002)Google Scholar
  42. 42.
    S.D. Konecky, G.Y. Panasyuk, K. Lee, V. Markel, A.G. Yodh, J.C. Schotland, Imaging complex structures with diffuse light. Opt. Express 16, 5048–5060 (2008)Google Scholar
  43. 43.
    J.P. Culver, V. Ntziachristos, M. Holboke, A.G. Yodh, Optimization of optode arrangements for diffuse optical tomography: a singular value analysis. Opt. Lett. 26, 701–703 (2004)Google Scholar
  44. 44.
    X. Intes, B. Chance, Multi-frequency diffuse optical tomography. J. Modern Opt. 52, 2139–2159 (2005)Google Scholar
  45. 45.
    A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S.R. Arridge, E.M. C. Hillman, A.G. Yodh, Diffuse optical tomography with spectral constraints and wavelength optimization. Appl. Opt. 44, 2082–2093 (2005)Google Scholar
  46. 46.
    B. Brendel, T. Nielsen, Selection of optimal wavelengths for spectral reconstructions in diffuse optical tomography. J. Biomed. Opt. 14, 034041 (2009)Google Scholar
  47. 47.
    M. Cheng, Medical Device Regulations: Global Overview and Guiding Principles (World Health Organization, Geneva, 2003)Google Scholar
  48. 48.
    J.T. Pfefer, B.A. Drum, Regulation and regulatory science for optical imaging, in Translational Multimodality Optical Imaging, ed. by F. Azar, X. Intes, Ch. 15 (Artech House, Norwood, 2008)Google Scholar
  49. 49.
    K. Schröder, Handbook on Industrial Laser Safety (Technical University of Vienna, 2000)Google Scholar
  50. 50.
    E. Alerstam, T. Svensson, S. Andersson-Engels, Parallel computing with graphics processing units for high speed Monte Carlo simulation of photon migration. J. Biomed. Opt. 13, 060504 (2008)Google Scholar
  51. 51.
    S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960)Google Scholar
  52. 52.
    R. Aronson, R.L. Barbour, J. Lubowsky, H. Graber, Application of transport theory to infra-red medical imaging. Modern Math. Methods Transport Theory, 64–67 (NA, 1991)Google Scholar
  53. 53.
    G.S. Abdoulaev, A.H. Hielscher, Three-dimensional optical tomography with the equation of radiative transfer. J. Electron. Imaging 12(4), 594–601 (2004)Google Scholar
  54. 54.
    M. Firbank, S.R. Arridge, M. Schweiger, D.T. Delpy, An investigation of light transport through scattering bodies with non-scattering regions. Phys. Med. Biol. 41, 767–783 (1998)Google Scholar
  55. 55.
    A.K. Scheel, M. Backhaus, A.D. Klose, B. Moa-Anderson, U. Netz, K.G. Hermann, First clinical evaluation of sagittal laser optical tomography for detection of synovitis in arthritic finger joints. Ann. Rheumatic Dis. 64, 239–245 (2005)Google Scholar
  56. 56.
    N. Patterson, B. Chance, B.C. Wilson, Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28, 2331–2336 (1989)Google Scholar
  57. 57.
    R.C. Haskell, L.O. Svaasand, T. Tsay, T. Feng, M.S. McAdams, T.J. Tromberg, Boundary conditions for the diffusion equation in radiative transfer. JOSA A 11, 2727–2741 (1994)Google Scholar
  58. 58.
    M. O’Leary, Imaging with diffuse photon density waves, PhD Dissertation, University of Pennsylvania (1996)Google Scholar
  59. 59.
    J. Ripoll, V. Ntziachristos, Iterative boundary method for diffuse optical tomography. JOSA A 20, 1103–1110 (2003)Google Scholar
  60. 60.
    J. Hebden, A. Gibson, R. Yusof, N. Everdell, E. Hillman, E. Delpy, Three-d dimensional optical tomography of the premature infant brain. Phys. Med. Biol. 47, 4155–4166 (2002)Google Scholar
  61. 61.
    Y. Chen, D. Tailor, X. Intes, B. Chance, Correlation between Near-Infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) on rat brain oxygenation modulation. Phys. Med. Biol. 48, 417–427 (2003)Google Scholar
  62. 62.
    D.R. Leff, O.J. Warren, L.C. Enfield, A. Gibson, T. Athanasiou, D.K. Patten, Diffuse optical imaging of the healthy and diseased breast: a systematic review. Breast Cancer Res. Treatment 108(1), 9–22 (2008)Google Scholar
  63. 63.
    X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, Time-domain optical mammography SoftScan?: initial results. Acad. Radiol. 12, 934–947 (2005)Google Scholar
  64. 64.
    X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. Yodh, B. Chance, In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green. Med. Phys. 30, 1039–1047 (2003)Google Scholar
  65. 65.
    T. Hamaoka, K.K. McCully, V. Quaresima, K. Yamamoto, B. Chance, Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J. Biomed. Opt. 12(6), 1–16 (2007)Google Scholar
  66. 66.
    Y. Lin, G. Lech, S. Nioka, X. Intes, B. Chance, Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager. Rev. Sci. Instrum. 73, 3065–3074 (2002)Google Scholar
  67. 67.
    X. Intes, C. Maloux, M. Guven, B. Yazici, B. Chance, Diffuse Optical Tomography with physiological and spatial a-priori constraints. Phys. Med. Biol. 49, N155–164 (2004)Google Scholar
  68. 68.
    J. Chang, H.L. Graber, P.C. Koo, R. Aronson, S.L. Barbour, R.L. Barbour, Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources. IEEE Trans. Med. Imaging 16, 68–77 (1997)Google Scholar
  69. 69.
    B.W. Pogue, K.D. Paulsen, High resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information. Opt. Lett. 23, 1716–1718 (1998)Google Scholar
  70. 70.
    B. Brooksby, H. Dehghani, B.W. Pogue, K.D. Paulsen, Near infrared tomography breast image reconstruction with a priori structural information fromMRI: algorithm development forreconstructing heterogeneities. IEEE J. STQE 9, 199–209 (2003)Google Scholar
  71. 71.
    M. Schweiger, S.R. Arridge, Optical tomographic reconstruction in a complex head model using a priori boundary information. Phys. Med. Biol. 44, 2703–2721 (1998)Google Scholar
  72. 72.
    M. Guven, B. Yazici, X. Intes, B. Chance, Diffuse optical tomography with a priori anatomical information. Phys. Med. Biol. 50, 2837–2858 (2005)Google Scholar
  73. 73.
    T. Hupper, R.D. Hoge, A.M. Dale, M.A. Franceschini, D.A. Boas, Quantitative spatial comparison of diffuse optical imaging with blood oxygen level dependent and arterial spin labeling-based functional magnetic resonance imaging. J. Biomed. Opt. 11, 064018 (2006)Google Scholar
  74. 74.
    C. Kuhl, The current status of breast MR imaging Part I: choice of technqine, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244, 672–691 (2007)Google Scholar
  75. 75.
    M. Khayat, Clinical studies in optical imaging: an industry perspective, in Translational Multimodality Optical Imaging, Ch. 14, ed. by F. Azar, X. Intes (Artech House, Norwood, 2008)Google Scholar
  76. 76.
    C.M. Carpenter, B.W. Pogue, S. Jiang, H. Dehghani, X. Wang, K.D. Paulsen, W.A. Wells, J. Forero, C. Kogel, J.B. Weaver, S.P. Poplack, P.A. Kaufman, Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size. Opt. Lett. 32, 933–935 (2007)Google Scholar
  77. 77.
    V. Toronov, X. Zhang, A. Webb, A spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex. NeuroImage 34, 1136–1148 (2001)Google Scholar
  78. 78.
    X.V. Zhang, V. Torornov, A. Webb, Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain. Opt. Express 13, 55135521 (2005)Google Scholar
  79. 79.
    Y. Chen, D. Tailor, X. Intes, B. Chance, Quantitative correlation between Near-Infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) on rat brain oxygenation modulation. Phys. Med. Biol. 48, 417–427 (2003)Google Scholar
  80. 80.
    F.A. Howe, S.P. Robinson, D.J.O. McIntyre, M. Stubbs, J.R. Griffiths, Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumours. NMR Biomed. 14, 497–506 (2001)Google Scholar
  81. 81.
    S.E. Singletary, Multidisciplinary frontiers in breast cancer mamangenetm: a surgeon’s perspective. Cancer 109, 1019–1029 (2007)Google Scholar
  82. 82.
    Q. Zhang, T.J. Brukilacchio, A. Li, J.J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R.H. Moore, D.B. Kopans, David A. Boas, Coregistered tomographic x-ray and optical breast imaging: initial results. J. Biomed. Opt. 10, 024033 (2005)Google Scholar
  83. 83.
    Q. Zhu, S. Tannenbaum, S.H. Kurtzman, Optical tomography with ultrasound localization for breast cancer diagnosis and treatment monitoring. Surg. Oncol. Clin. 16, 307–321 (2007)Google Scholar
  84. 84.
    S. Surti, J.S. Karp, Imaging characteristics of a 3-D GSO whole body PET camera. J. Nucl. Med. 45, 1040–1049 (2004)Google Scholar
  85. 85.
    R. Freifelder, J.S. Karp, Dedicated PET scanners for breast imaging. Phys. Med. Biol. 42, 2453–2480 (1997)Google Scholar
  86. 86.
    S.D. Konecky, R. Choe, A. Corlu, K. Lee, R. Wiener, S.M. Srinivas, J.R. Saffer, R. Freifelder, J.S. Karp, N. Hajjioui, F. Azar, A.G. Yodh, Comparison of diffuse optical tomography of human breast with whole body and breast only positron emission tomography. Med. Phys. 35, 446–455 (2008)Google Scholar
  87. 87.
    K. Licha, C. Olbrich, Optical imaging in drug discovery and diagnostic applications. Adv. Drug Deliv. Rev. 57(8), 1087–108 (2005)Google Scholar
  88. 88.
    A. Corlu, et al., Opt. Express 15, 6696 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Biomedical Engineering DepartmentRensselaer Polytechnic InstituteTroyUSA
  2. 2.Clinical Data Solutions, Office of Medical & Health AffairsPhilips HealthcareRamseyUSA

Personalised recommendations