Skip to main content

Multimodal Diffuse Optical Imaging

  • Chapter
  • First Online:
Biomedical Optical Imaging Technologies

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2791 Accesses

Abstract

Diffuse optical imaging, particularly diffuse optical tomography (DOT), is an emerging clinical modality capable of providing unique functional information, at a relatively low cost, and with nonionizing radiation. Multimodal diffuse optical imaging has enabled a synergistic combination of functional and anatomical information: the quality of DOT reconstructions has been significantly improved by incorporating the structural information derived by the combined anatomical modality. In this chapter, we will review the basic principles of diffuse optical imaging, including instrumentation and reconstruction algorithm design. We will also discuss the approaches for multimodal imaging strategies that integrate DOI with clinically established modalities. The merit of the multimodal imaging approaches is demonstrated in the context of optical mammography, but the techniques described herein can be translated to other clinical scenarios such as brain functional imaging or muscle functional imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, M.S. Feld, Polarized light scattering spectroscopy for quantitative measurement of epithelial structures in situ. IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999)

    Google Scholar 

  2. J. Beuthan, O. Minet, J. Helfman, G. Muller, The spatial variation of the refractive index in biological cells. Phys. Med. Biol. 41, 369–382 (1996)

    Google Scholar 

  3. B. Beauvoit, S.M. Evans, T.W. Jenkins, E.E. Miller, B. Chance, Correlation between the light scattering and the mitochondrial content of normal tissues and transplantable rodent tumors. Anal. Biochem. 226, 167–174 (1995)

    Google Scholar 

  4. V. Backman, M.B. Wallace, L.T. Perelman, J.T. Arendt, R. Gurjar, M.G. Muller, Detection of pre-invasive cancer cells. Nature 406, 35–36 (2000)

    Google Scholar 

  5. J.R. Lackowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic-Plenum Publ., New York, 1999)

    Google Scholar 

  6. M.A. Mycek, B.W. Pogue, Handbook of Biomedical Fluorescence (CRC Press LLC, Boca Raton, 2003)

    Google Scholar 

  7. R. Benson, H. Kues, Fluorescence properties of indocyanine green as related to angiography. Phys. Med. Biol. 23, 159–163 (1978)

    Google Scholar 

  8. R. Branch, J. James, A. Read, The clearance of antipyrine and indocyanine green in normal subjects and in patients with chronic liver disease. Clin. Pharmacol. Ther. 20, 81–89 (1976)

    Google Scholar 

  9. C. Niemann, T. Henthorn, T. Krejcie, C. Shanks, C. Enders-Klein, M. Avram, Indocyanine green kinetics characterize blood volume and flow distribution and their alteration by propanolol. Clin. Pharm. Ther. 67, 342–350 (2000)

    Google Scholar 

  10. J. Chen and X. Intes, Comparison of Monte Carlo Methods for Fluorescence Molecular Tomography - Computational Efficiency. Medical Physics 38(10), 5788–5798 (2011)

    Google Scholar 

  11. M. Cutler, Transillumination as an aid in the diagnosis of breast lesions. Surg. Gynecol. Obstet. 48, 721–728 (1929)

    Google Scholar 

  12. C.M. Gros, Y. Quenneville, Y. Hummel, Diaphanologic mammaire. J. Radiol. Electrol. Med. Nucl. 53, 297 (1972)

    Google Scholar 

  13. A.E. Profio, O.W. Sartorius, G.A. Navarro, Scientific basis of breast diaphanography. Med. Phys. 16, 60–65 (1989)

    Google Scholar 

  14. E. Carlsen, Diagnostic Imaging (Spectrascan, S. Windsor, 1982)

    Google Scholar 

  15. J.C. Hebden, S.R. Arridge, D.T. Delpy, Optical imaging in medicine: I. Experimental techniques. Phys. Med. Biol. 42, 825–840 (1997)

    Google Scholar 

  16. A.P. Gibson, J.C. Hebden, S.R. Arridge, Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005)

    Google Scholar 

  17. R. Bright, in Disease of the Brain and Nervous System. vol. 2431 (Longman, London, 1831)

    Google Scholar 

  18. T.B. Curling, A practical treatise on the diseases of the testis and the spermatic cord and Scrotum (Samule Hihgley, London, 1843), pp. 125–181

    Google Scholar 

  19. G.F. Knoll, Radiation Detection and Measurements, 3rd edn. (Wiley Text Books, Wiley, New York, 1999)

    Google Scholar 

  20. S.R. Arridge, W.R.B. Lionheart, Nonuniqueness in diffusion-based optical tomography. Opt. Lett. 23, 882–884 (1998)

    Google Scholar 

  21. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E.M.C. Hillman, S.R. Arridge, A.G. Yodh, Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography. Opt. Lett. 28, 2339–2431 (2003)

    Google Scholar 

  22. D.A. Boas, T. Gaudette, S.R. Arridge, Simultaneous imaging and optode calibration with diffuse optical tomography. Opt. Express 8, 263–273 (2001)

    Google Scholar 

  23. X. Intes, J. Ripoll, T. Kitai, Y. Chen, S. Nioka, A.G. Yodh, B. Chance, CW-optical breast imaging enhanced with Indocyanine green. Med. Phys. 30, 1039–1047 (2003)

    Google Scholar 

  24. Y. Yao, Y. Wang, Y. Pei, W. Zhu, R.L. Barbour, Frequency domain optical imaging of absorption and scattering distributions by a Born iterative method. JOSA A 14, 325–342 (1997)

    Google Scholar 

  25. X. Intes, B. Chance, Multi-frequency diffuse optical tomography. J. Modern Opt. 52, 2139–2159 (2005)

    Google Scholar 

  26. B. Chance, M. Cope, E. Gratton, N. Ramirez, B.J. Tromberg, Phase measurement of light absorption and scatter in human tissue. Rev. Sci. Instrum. 69, 3457–3481 (1998)

    Google Scholar 

  27. M. Kaschke, H. Jess, G. Gaida, J.M. Kaltenbach, W. Wrobel, Transillumination imaging of tissue by phase modulation techniques. Proc. OSA Adv. Opt. Imaging Photon Migration 21, 88–92 (1994)

    Google Scholar 

  28. K.T. Moesta, H. Kaisers, S. Fantini, M. Tonnies, M. Kaschke, P.M. Schlag, Lasermammografie der Brustdruse-Sensitivitatssteigerung durch Hochfrequenzmodulation. Langenbecks Arch. Chir. Suppl. 1, 543–548 (1996)

    Google Scholar 

  29. L. Gotz, S.H. Heywang-Kobrunner, O. Schutz, H. Siebold, Optische mammographie an praoperativen patientinnen. Akt. Radiol. 8, 31–33 (1998)

    Google Scholar 

  30. M.A. Franceschini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Mantulin, M. Seeber, P.M. Schlag, M. Kaschke, Frequency-domain techniques enhance optical mammography: initial clinical results. Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997)

    Google Scholar 

  31. S. Fantini, S.A. Walker, M.A. Franceschini, M. Kaschke, P.M. Schlag, K.T. Moesta, Assessment of the size, position and optical properties of breast tumors in vivo by noninvasive optical methods. Appl. Opt. 37, 1982–1989 (1998)

    Google Scholar 

  32. T.O. Mcbride, B.W. Pogue, S. Jiang, U.L. Osterberg, K.D. Paulsen, A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo. Rev. Sci. Instrum. 72, 1817–1824 (2001)

    Google Scholar 

  33. J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A.G. Yodh, Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med. Phys. 30, 235–247 (2003)

    Google Scholar 

  34. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S.R. Arridge, E.M. C. Hillman, A.G. Yodh, Diffuse optical tomography with spectral constraints and wavelength optimization. Appl. Opt. 44, 2082–2093 (2005)

    Google Scholar 

  35. J.C. Hebden, S.R. Arridge, D.T. Delpy, Optical imaging in medicine: I. Experimental techniques. Phys. Med. Biol. 42, 825–840 (1997)

    Google Scholar 

  36. M. Schweiger, S.R. Arridge, Application of temporal filters to time-resolved data in optical tomography. Phys. Med. Biol. 44, 1699–1717 (1999)

    Google Scholar 

  37. D. Grosenick, H. Wabnitz, H.H. Rinneberg, K.T. Moesta, P.M. Schlag, Development of a time-domain optical mammograph and first in vivo applications. Appl. Opt. 38, 2927–2943 (1999)

    Google Scholar 

  38. A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, Four-wavelength time-resolved optical mammography in the 680–980 nm range. Opt. Lett. 28, 1138–1140 (2003)

    Google Scholar 

  39. X. Intes, Time-domain optical mammography initial results. Acad. Radiol. 12, 934–947 (2005)

    Google Scholar 

  40. F.E.W. Schmidt, M.E. Fry, E.M.C. Hillman, J.C. Hebden, D.T. Delpy, A 32-channel time-resolved instrument for medical optical tomography. Rev. Sci. Instrum. 71, 256–265 (2000)

    Google Scholar 

  41. X. Intes, J. Yu, A.G. Yodh, B. Chance, Development and evaluation of a multi wavelength – multi channel time resolved optical instrument for NIR/MRI mammography co-registration, in IEEE – EMBS NEBE 2002: Defining the Future for Biomedical Engineering, Philadelphia (2002)

    Google Scholar 

  42. S.D. Konecky, G.Y. Panasyuk, K. Lee, V. Markel, A.G. Yodh, J.C. Schotland, Imaging complex structures with diffuse light. Opt. Express 16, 5048–5060 (2008)

    Google Scholar 

  43. J.P. Culver, V. Ntziachristos, M. Holboke, A.G. Yodh, Optimization of optode arrangements for diffuse optical tomography: a singular value analysis. Opt. Lett. 26, 701–703 (2004)

    Google Scholar 

  44. X. Intes, B. Chance, Multi-frequency diffuse optical tomography. J. Modern Opt. 52, 2139–2159 (2005)

    Google Scholar 

  45. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S.R. Arridge, E.M. C. Hillman, A.G. Yodh, Diffuse optical tomography with spectral constraints and wavelength optimization. Appl. Opt. 44, 2082–2093 (2005)

    Google Scholar 

  46. B. Brendel, T. Nielsen, Selection of optimal wavelengths for spectral reconstructions in diffuse optical tomography. J. Biomed. Opt. 14, 034041 (2009)

    Google Scholar 

  47. M. Cheng, Medical Device Regulations: Global Overview and Guiding Principles (World Health Organization, Geneva, 2003)

    Google Scholar 

  48. J.T. Pfefer, B.A. Drum, Regulation and regulatory science for optical imaging, in Translational Multimodality Optical Imaging, ed. by F. Azar, X. Intes, Ch. 15 (Artech House, Norwood, 2008)

    Google Scholar 

  49. K. Schröder, Handbook on Industrial Laser Safety (Technical University of Vienna, 2000)

    Google Scholar 

  50. E. Alerstam, T. Svensson, S. Andersson-Engels, Parallel computing with graphics processing units for high speed Monte Carlo simulation of photon migration. J. Biomed. Opt. 13, 060504 (2008)

    Google Scholar 

  51. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960)

    Google Scholar 

  52. R. Aronson, R.L. Barbour, J. Lubowsky, H. Graber, Application of transport theory to infra-red medical imaging. Modern Math. Methods Transport Theory, 64–67 (NA, 1991)

    Google Scholar 

  53. G.S. Abdoulaev, A.H. Hielscher, Three-dimensional optical tomography with the equation of radiative transfer. J. Electron. Imaging 12(4), 594–601 (2004)

    Google Scholar 

  54. M. Firbank, S.R. Arridge, M. Schweiger, D.T. Delpy, An investigation of light transport through scattering bodies with non-scattering regions. Phys. Med. Biol. 41, 767–783 (1998)

    Google Scholar 

  55. A.K. Scheel, M. Backhaus, A.D. Klose, B. Moa-Anderson, U. Netz, K.G. Hermann, First clinical evaluation of sagittal laser optical tomography for detection of synovitis in arthritic finger joints. Ann. Rheumatic Dis. 64, 239–245 (2005)

    Google Scholar 

  56. N. Patterson, B. Chance, B.C. Wilson, Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28, 2331–2336 (1989)

    Google Scholar 

  57. R.C. Haskell, L.O. Svaasand, T. Tsay, T. Feng, M.S. McAdams, T.J. Tromberg, Boundary conditions for the diffusion equation in radiative transfer. JOSA A 11, 2727–2741 (1994)

    Google Scholar 

  58. M. O’Leary, Imaging with diffuse photon density waves, PhD Dissertation, University of Pennsylvania (1996)

    Google Scholar 

  59. J. Ripoll, V. Ntziachristos, Iterative boundary method for diffuse optical tomography. JOSA A 20, 1103–1110 (2003)

    Google Scholar 

  60. J. Hebden, A. Gibson, R. Yusof, N. Everdell, E. Hillman, E. Delpy, Three-d dimensional optical tomography of the premature infant brain. Phys. Med. Biol. 47, 4155–4166 (2002)

    Google Scholar 

  61. Y. Chen, D. Tailor, X. Intes, B. Chance, Correlation between Near-Infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) on rat brain oxygenation modulation. Phys. Med. Biol. 48, 417–427 (2003)

    Google Scholar 

  62. D.R. Leff, O.J. Warren, L.C. Enfield, A. Gibson, T. Athanasiou, D.K. Patten, Diffuse optical imaging of the healthy and diseased breast: a systematic review. Breast Cancer Res. Treatment 108(1), 9–22 (2008)

    Google Scholar 

  63. X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, Time-domain optical mammography SoftScan?: initial results. Acad. Radiol. 12, 934–947 (2005)

    Google Scholar 

  64. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. Yodh, B. Chance, In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green. Med. Phys. 30, 1039–1047 (2003)

    Google Scholar 

  65. T. Hamaoka, K.K. McCully, V. Quaresima, K. Yamamoto, B. Chance, Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J. Biomed. Opt. 12(6), 1–16 (2007)

    Google Scholar 

  66. Y. Lin, G. Lech, S. Nioka, X. Intes, B. Chance, Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager. Rev. Sci. Instrum. 73, 3065–3074 (2002)

    Google Scholar 

  67. X. Intes, C. Maloux, M. Guven, B. Yazici, B. Chance, Diffuse Optical Tomography with physiological and spatial a-priori constraints. Phys. Med. Biol. 49, N155–164 (2004)

    Google Scholar 

  68. J. Chang, H.L. Graber, P.C. Koo, R. Aronson, S.L. Barbour, R.L. Barbour, Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources. IEEE Trans. Med. Imaging 16, 68–77 (1997)

    Google Scholar 

  69. B.W. Pogue, K.D. Paulsen, High resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information. Opt. Lett. 23, 1716–1718 (1998)

    Google Scholar 

  70. B. Brooksby, H. Dehghani, B.W. Pogue, K.D. Paulsen, Near infrared tomography breast image reconstruction with a priori structural information fromMRI: algorithm development forreconstructing heterogeneities. IEEE J. STQE 9, 199–209 (2003)

    Google Scholar 

  71. M. Schweiger, S.R. Arridge, Optical tomographic reconstruction in a complex head model using a priori boundary information. Phys. Med. Biol. 44, 2703–2721 (1998)

    Google Scholar 

  72. M. Guven, B. Yazici, X. Intes, B. Chance, Diffuse optical tomography with a priori anatomical information. Phys. Med. Biol. 50, 2837–2858 (2005)

    Google Scholar 

  73. T. Hupper, R.D. Hoge, A.M. Dale, M.A. Franceschini, D.A. Boas, Quantitative spatial comparison of diffuse optical imaging with blood oxygen level dependent and arterial spin labeling-based functional magnetic resonance imaging. J. Biomed. Opt. 11, 064018 (2006)

    Google Scholar 

  74. C. Kuhl, The current status of breast MR imaging Part I: choice of technqine, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244, 672–691 (2007)

    Google Scholar 

  75. M. Khayat, Clinical studies in optical imaging: an industry perspective, in Translational Multimodality Optical Imaging, Ch. 14, ed. by F. Azar, X. Intes (Artech House, Norwood, 2008)

    Google Scholar 

  76. C.M. Carpenter, B.W. Pogue, S. Jiang, H. Dehghani, X. Wang, K.D. Paulsen, W.A. Wells, J. Forero, C. Kogel, J.B. Weaver, S.P. Poplack, P.A. Kaufman, Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size. Opt. Lett. 32, 933–935 (2007)

    Google Scholar 

  77. V. Toronov, X. Zhang, A. Webb, A spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex. NeuroImage 34, 1136–1148 (2001)

    Google Scholar 

  78. X.V. Zhang, V. Torornov, A. Webb, Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain. Opt. Express 13, 55135521 (2005)

    Google Scholar 

  79. Y. Chen, D. Tailor, X. Intes, B. Chance, Quantitative correlation between Near-Infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) on rat brain oxygenation modulation. Phys. Med. Biol. 48, 417–427 (2003)

    Google Scholar 

  80. F.A. Howe, S.P. Robinson, D.J.O. McIntyre, M. Stubbs, J.R. Griffiths, Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumours. NMR Biomed. 14, 497–506 (2001)

    Google Scholar 

  81. S.E. Singletary, Multidisciplinary frontiers in breast cancer mamangenetm: a surgeon’s perspective. Cancer 109, 1019–1029 (2007)

    Google Scholar 

  82. Q. Zhang, T.J. Brukilacchio, A. Li, J.J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R.H. Moore, D.B. Kopans, David A. Boas, Coregistered tomographic x-ray and optical breast imaging: initial results. J. Biomed. Opt. 10, 024033 (2005)

    Google Scholar 

  83. Q. Zhu, S. Tannenbaum, S.H. Kurtzman, Optical tomography with ultrasound localization for breast cancer diagnosis and treatment monitoring. Surg. Oncol. Clin. 16, 307–321 (2007)

    Google Scholar 

  84. S. Surti, J.S. Karp, Imaging characteristics of a 3-D GSO whole body PET camera. J. Nucl. Med. 45, 1040–1049 (2004)

    Google Scholar 

  85. R. Freifelder, J.S. Karp, Dedicated PET scanners for breast imaging. Phys. Med. Biol. 42, 2453–2480 (1997)

    Google Scholar 

  86. S.D. Konecky, R. Choe, A. Corlu, K. Lee, R. Wiener, S.M. Srinivas, J.R. Saffer, R. Freifelder, J.S. Karp, N. Hajjioui, F. Azar, A.G. Yodh, Comparison of diffuse optical tomography of human breast with whole body and breast only positron emission tomography. Med. Phys. 35, 446–455 (2008)

    Google Scholar 

  87. K. Licha, C. Olbrich, Optical imaging in drug discovery and diagnostic applications. Adv. Drug Deliv. Rev. 57(8), 1087–108 (2005)

    Google Scholar 

  88. A. Corlu, et al., Opt. Express 15, 6696 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Intes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Intes, X., Venugopal, V., Chen, J., Azar, F.S. (2013). Multimodal Diffuse Optical Imaging. In: Liang, R. (eds) Biomedical Optical Imaging Technologies. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28391-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28391-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28390-1

  • Online ISBN: 978-3-642-28391-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics