Skip to main content

Bewertung der Risikostudien und verbessertes (neues) Sicherheitskonzept für LWRs

  • Chapter
  • First Online:
Sicherheit von Leichtwasserreaktoren

Zusammenfassung

Die Ergebnisse der Risikostudien von 1975–1990 und die Auswirkungen des schweren Reaktorunfalls von Tschernobyl (1986) führten um 1990 in Deutschland zu neuen Diskussionen und zu einem Umdenken in Richtung eines (neuen) Sicherheitskonzepts. Die in den Kap. 7 und 8 dargestellten Ergebnisse der Risikostudien und ihr Vergleich mit den Ergebnissen anderer Energieproduktions-Systeme und -Technologien führten – wie in den vorangegangenen Abschnitten gezeigt – zu geringeren Eintrittshäufigkeiten und etwa vergleichbaren Werten für Todesfälle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.95
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 44.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Hennies H H, Kessler G, Eibl J (1989) Improved containment concept for future pressurized water reactors, 5th Int. Conf. on Emerging Nuclear Energy Systems (ICENES) 3–6 July 1989, Karlsruhe, Germany

    Google Scholar 

  2. Hennies H H, Kessler G, Eibl J (1992) Containments and core catchers in future reactors. Atomwirtschaft 37:238–247

    Google Scholar 

  3. Eibl J et al (1992), How to eliminate containment failure in tomorrows PWRs (Pressurized Water Reactors), Nucl. Engineering International 37(453):51–55

    Google Scholar 

  4. Kessler G (2002), Requirements for nuclear energy in the 21st century, Nuclear energy as a sustainable energy source, Progress in Nucl. Energy, 60(No.3–4):309–325

    Article  Google Scholar 

  5. Gemeinsame Empfehlung von RSK und GPR für Sicherheitsanforderungen an zukünftige Kernkraftwerke mit Druckwasserreaktoren, Bundesanzeiger Nr. 218, 20. November 1993

    Google Scholar 

  6. IPSN-GRS Proposals for the development of technical guidelines for future PWRs (1998), Vol. 5, Structuring GPR-RSK Recommendations as Guidelines, Common report IPSN/GRS No. 42, Institut de Protection et de Sûreté Nucléaire, Saclay, France, Gesellschaft für Reaktorsicherheit, Garching, Germany

    Google Scholar 

  7. Bundesgesetzblatt, Gesetz zur Sicherung des Einsatzes von Steinkohle in der Verstromung und zur Änderung des Atomgesetzes und des Stromeinspeisungsgesetzes (Artikel 4, 7. Gesetz zur Änderung des Atomgesetzes, § 7 Absatz 2a), Nr. 46, 19.7.1994

    Google Scholar 

  8. Kernenergieausstiegsgesetz (2011) Dreizehntes Gesetz zur Änderung des Atomgesetzes vom 31.07.2011 (BGBl I S. 1704)

    Google Scholar 

  9. Reactor Safety Study (1975) An assessment of accidents risks in US Commercial Nuclear Power Plants. In: Rasmussen N C (ed) US Nuclear Regulatory Commission, Washington, WASH-1400 (NUREG-75/014)

    Google Scholar 

  10. Deutsche Risikostudie Kernkraftwerke Phase A (1980), Gesellschaft für Reaktorsicherheit (GRS), TÜV Rheinland, Köln

    Google Scholar 

  11. Ehrhardt J et al (1982) Der Einsatz des Unfallfolgenmodells der "Deutschen Risikostudie Kernkraftwerke" bei Risikoabschätzungen zu verschiedenen Reaktortypen, KfK-Nachrichten, Jahrg. 14–4:269–277, Kernforschungszentrum Karlsruhe

    Google Scholar 

  12. Bayer A, Heuser F W (1981) Basic aspects and results of the German Risk Study. Nuclear Safety 22:695–709

    Google Scholar 

  13. The SL-1 Reactor Accident. http://www.radiationworks.com/photos/sl1reactor1.htm; http://en.wikipedia.org/wiki/SL-1

  14. Corradini M L et al (1988) Vapor explosion in light water reactors: a review of theory and modelling. Progress in Nucl Energy 22:1–117

    Article  Google Scholar 

  15. Magallon D (2005) FCI Phenomena uncertainties impacting predictability of dynamic loading of reactor structures (from OECD SERENA programme), PSA-2 Workshop, Nov. 7–9, 2005, Aix-en-Provence

    Google Scholar 

  16. Berthoud G (2000) Vapor explosions. Annual Rev. Fluid Mech 32:573–611

    Article  Google Scholar 

  17. Jacobs H et al (1994) Untersuchungen zur Dampfexplosion, PSF Statusbericht 23. März 1994 KfK 5326. Kernforschungszentrum Karlsruhe 214–232

    Google Scholar 

  18. Board SJ et al (1975) Detonation of coolant explosions. Nature 254(3):319–321

    Article  Google Scholar 

  19. Berman M et al (1989) Steam explosion triggering and propagation: hypothesis and evidence, Proc. 3rd Int. Seminar on Containment and Nuclear Reactors, UCLA, Los Angeles, 10–11 August 1989 (SNL report SAND89–1878C)

    Google Scholar 

  20. Struwe D et al (1999) Consequence evaluation of in-vessel fuel coolant interaction in the European Pressurized Water Reactor, FZKA 6316, Forschungszentrum Karlsruhe

    Google Scholar 

  21. Krieg R (1995) Missiles caused by severe pressurized-water reactor accidents. Nuclear Safety 36:299–309

    Google Scholar 

  22. Allison M et al (1993) SCDAP/RELAP5 mod3.1 Code Manual, Vol. I-IV, NUREG/CR-6150, EGG-2720

    Google Scholar 

  23. Coryell E et al (1997) SCDAP/RELAP5 mod3.2 Code Manual, Vol. I-V, NUREG/CR-6150, INEL-96/0422

    Google Scholar 

  24. SCDAP/RELAP5 mod 3.2, http://relap5.inel.gov/scdap/home.html

  25. Summers et al (1995) MELCOR Computer Code Manuals, Vol. 1–2 (Vers: 1.8.3), NUREG/CR-6119, SAND93–2185

    Google Scholar 

  26. Valette M (1997) MC3D V3.0 Directions for use, Commissariat à l’énergie atomique Grenoble, STR/LTEM, STR-LTEM-96–52

    Google Scholar 

  27. Berthoud G et al (1994) Development of a multidimensional model for the premixing phase of a fuel coolant interaction, Nucl Eng Design 149:409–418

    Article  Google Scholar 

  28. Jacobs H et al (1995) Multifield simulations of premixing experiments, Prod. of “A multidisciplinary Intern. Seminar on intense multiphase interactions”, Santa Barbara, CA, USA, June 9–13, 1995, pp 56–69

    Google Scholar 

  29. Krieg R et al (1995) Slug impact loading on the vessel head during a postulated in-vessel steam explosion in pressurized water reactors – assessments and discussion of the investigation strategy. Nucl Technol 111:369–385

    Google Scholar 

  30. Hirt A (1998) Rechenmodell zum Aufprall von Kernschmelze auf die oberen Einbauten und den Deckel eines Reaktordruckbehälters, FZKA 6054, Forschungszentrum Karlsruhe

    Google Scholar 

  31. Malmberg T (1995) Aspects of similitude theory in solid mechanics, Part I: Deformation behavior, FZKA 5657, Forschungszentrum Karlsruhe

    Google Scholar 

  32. Stach T (1997) Zur Skalierung von Modellversuchen zum Aufprall flüssiger Massen auf deformierbare Strukturen, FZKA 5903, Forschungszentrum Karlsruhe

    Google Scholar 

  33. Krieg R et al (2000) Load carrying capacity of a reactor vessel head under a corium slug impact from a postulated in-vessel steam explosion. Nucl Eng Design 202:179–196

    Article  Google Scholar 

  34. Krieg R et al (2003) Load carrying capacity of a reactor vessel under molten core slug impact. Final report including recent experimental findings. Nucl Eng Design 293:237–253

    Article  Google Scholar 

  35. Krieg R (1997) Mechanical efficiency of the energy release during a steam explosion. Nucl Technol 117:151–157

    Google Scholar 

  36. Travis J R et al (1998) GASFLOW-II: A three-dimensional-finite-volume fluid-dynamics code for calculating the transport, mixing, and combustion of flammable gases and aerosols in geometrically complex domains, theory and computational model, Vol. 1, FZKA-5994 and LA-13357-MS

    Google Scholar 

  37. Veser A et al (1999) Experiments on turbulent combustion and COM3D verification, Proc. Jahrestagung Kerntechnik 99, Kerntechnische Gesellschaft e. V. Deutsches Atomforum e. V. Annual Meeting on Nuclear Technology 99, Karlsruhe, 18.-20. Mai 1999

    Google Scholar 

  38. Kotchourko A S et al (1999) Reactive flow simulations in complex 3D geometries using the COM3D code, Proc. Jahrestagung Kerntechnik 99, Kerntechnische Gesellschaft e. V. Deutsches Atomforum e. V. Annual Meeting on Nuclear Technology 99, Karlsruhe, 18.-20. Mai 1999

    Google Scholar 

  39. Redlinger R (1999) DET3D: a code for calculating detonations in reactor containments, Proc. Jahrestagung Kerntechnik 99, Kerntechnische Gesellschaft e. V. Deutsches Atomforum e. V. Annual Meeting on Nuclear Technology 99, Karlsruhe, 18.-20. Mai 1999

    Google Scholar 

  40. Dorofeev S B et al (2001) Evaluation of limits for effective flame acceleration in hydrogen mixtures. J Loss Prevent Process Indus 14:583–589

    Article  Google Scholar 

  41. Dorofeev S B et al (1999) Effect of scale and mixture properties on behavior of turbulent flames in obstructed areas, FZKA 6268, Forschungszentrum Karlsruhe

    Google Scholar 

  42. Kuznetsov M et al (1999) Effect of obstacle geometry on behaviour of turbulent flames, FZKA 6328, Forschungszentrum Karlsruhe

    Google Scholar 

  43. Breitung W et al (2005) Innovative Methoden zur Analyse und Kontrolle des Wasserstoffverhaltens bei Kernschmelzunfällen, FZKA 7085, Forschungszentrum Karlsruhe

    Google Scholar 

  44. Rohde J et al (1997) Selection of representative accidents and evaluation of H2-control measures in PWR containments, 14th session of RSK Light Water Reactor Safety Committee, January 1997

    Google Scholar 

  45. Krieg R et al (2003) Assessment of the load-carrying capacities of a spherical pressurized water reactor steel containment under a postulated hydrogen detonation. Nucl Technol 141:109–121

    Google Scholar 

  46. ABAQUS (1989) A general purpose linear and nonlinear finite element code, user manual standard 5.8, Hibbit, Karlson & Sorenson Inc., Providence, Rhode Island

    Google Scholar 

  47. Bung H et al (1993) A new method for the treatment of impact and mechanics in reactor technology (SMIRT12), Stuttgart, Germany

    Google Scholar 

  48. Krieg R (2005) Failure strains and proposed limit strains for a reactor pressure vessel under severe accident conditions. Nucl Eng Design 235:199–212

    Article  Google Scholar 

  49. Breitung W et al (2005) Innovative Methoden zu Analyse und Kontrolle des Wasserstoffverhaltens bei Kernschmelzunfällen, Abschlußbericht zu Teilprojekt 1 des HGF-Strategiefondsprojekts 98/07

    Google Scholar 

  50. Bewertung des Unfallrisikos fortschrittlicher DWR in Deutschland (2001) GRS-175, Gesellschaft für Reaktorsicherheit

    Google Scholar 

  51. Birkhofer A (1989) Anlageninterner Notfallschutz, Achtes deutsches Atomrechtssymposium 1.-3. März 1989 München, Carl Heymann KG, Köln

    Google Scholar 

  52. Schenk H (1990) Maßnahmen zum anlageninternen Notfallschutz, Atomwirtschaft, November 1990:514–520

    Google Scholar 

  53. Deutsche Risikostudie Kernkraftwerke Phase B (1990) TÜV Rheinland, Köln

    Google Scholar 

  54. Kersting E et al (1993) Safety analysis for boiling water reactors, A summary, GRS-98, Gesellschaft für Anlagen- und Reaktorsicherheit, Garching

    Google Scholar 

  55. The RELAP5 Development Team (1995) RELAP5/mod3 Code Manual, Vol. 1–7, NUREG/CR-5535, INEL-95/1074

    Google Scholar 

  56. Jacobs G (1995) Dynamic loads from reactor pressure vessel core melt through under high primary pressure. Nucl Technol 111:351–356

    Google Scholar 

  57. Plank H et al (2009) Severe Accident Management Measures for Future NPPs. http://sacre.web.psi.ch/ISAMM2009/oecd-sami2001/Papers/p20-Plank/SAM-Paper-b.pdf

  58. Czech J et al (1999) European pressurized water reactor: safety objectives and principles. Nucl Eng Design 187:25–32

    Article  Google Scholar 

  59. Henry RE et al (1993) External cooling of a reactor vessel under severe accident conditions. Nucl Eng Design 139:31–43

    Article  Google Scholar 

  60. Thinnes GL et al (1989) Comparison of thermal and mechanical responses of the Three Mile Island Unit 2 vessel. Nucl Technol 87:1036–1049

    Google Scholar 

  61. Stosic ZV et al (2008) Boiling water reactor with innovative safety concept: the generation III + SWR-1000. Nucl Eng Design 238:1863–1901

    Article  Google Scholar 

  62. Kolev NI (2004) External cooling – the SWR-1000 severe accident management strategy, 12th Int. Conf. on Nuclear engineering – ICONE-12, April 25–29, Arlington, VA, USA

    Google Scholar 

  63. Reimann M et al (1981) The WECHSL-Code: a computer program for the interaction of a core melt with concrete, KfK 2980, Kernforschungszentrum Karlsruhe

    Google Scholar 

  64. Reimann M (1987) Verification of the WECHSL-code on melt/concrete interaction and application to the core melt accident. Nucl Eng Design 103:127–137

    Article  Google Scholar 

  65. Krieg R et al (1987) Failure pressure and failure mode of the latest type of German PWR containments. Nucl Eng Design 104:381–390

    Article  Google Scholar 

  66. Göller B et al (1988) Failure pressure and failure mode of the bolted connection for the large component port in German PWR containments. Nucl Eng Design 106:35–45

    Article  Google Scholar 

  67. Kuczera B (1991) Aktueller Stand der Reaktorsicherheitsforschung dargestellt anhand von Ergebnissen aus der deutschen Risikostudie Kernkraftwerke – Phase B, Radioaktivität – Risiko – Sicherheit, Herausgeber Kernforschungszentrum Karlsruhe (2. veränderte und aktualisierte Auflage 1991)

    Google Scholar 

  68. Turricchia A (1992) How to avoid molten core/concrete interaction (and steam explosions, Proc. 2nd OECD(NEA) CSNI Spec. Meeting on Molten Core Debris-Concrete Interaction, KfK 5108, NEA/CSNI/R(92)10, H. Alsmeyer (ed) p 503

    Google Scholar 

  69. Tromm W et al (1991), Radionuclide dispersion after core-concrete melt leaching by groundwater. Kerntechnik 56(6):7–12

    Google Scholar 

  70. Alsmeyer H et al (1987), BETA-experiments in verification of the WECHSL-code: experimental results on the melt-concrete interaction. Nucl Eng Design 103:115–125

    Article  Google Scholar 

  71. Alsmeyer H (1989) Containment loadings from melt-concrete interaction. Nucl Eng Design 117:45–50

    Article  Google Scholar 

  72. Fieg G et al (1996) Simulation experiments on the spreading behavior of molten core melts, Proc. of the 1996 National Heat Transfer Conf., Houston, TX., August 3–6, 1996, Vol. 9:121–130, La Grange Park, Ill. American Nuclear Society

    Google Scholar 

  73. Lewis BJ (2008) Overview of experimental programs on core melt progression and fission product release behaviour. J Nucl Mater 380:126–143

    Article  Google Scholar 

  74. Meyer L et al (2003) Low pressure corium dispersion experiments with simulant fluids in a scaled annular cavity. Nucl Technol 141:257–274

    Google Scholar 

  75. Ott LJ (1997) Advanced BWR Core Component Designs and the Implications for SFD Analysis, Oak Ridge National Laboratory P.O. Box 2009, Oak Ridge, Tennessee 37831–8057 (423) 574–0324

    Google Scholar 

  76. Park JW (2012) Investigation of core melt coolability inside the large evolutionary advanced power reactor APR1400, atw 57. Heft 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Kessler .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kessler, G., Veser, A., Schlüter, FH., Raskob, W., Landman, C., Päsler-Sauer, J. (2012). Bewertung der Risikostudien und verbessertes (neues) Sicherheitskonzept für LWRs. In: Sicherheit von Leichtwasserreaktoren. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28381-9_9

Download citation

Publish with us

Policies and ethics