Skip to main content

The Earth’s Magnetic Field and the Geomagnetic Effects

  • Chapter
  • First Online:
Celestial Messengers

Part of the book series: Astronomers' Universe ((ASTRONOM))

  • 1033 Accesses

Abstract

The researches described until now regarded the nature of cosmic rays on the Earth, but had given no direct information on the nature of the “primary” cosmic rays that are falling on the Earth from outside. This information came from the study of new effects, due to the presence of the Earth’s magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The dipole moment is 8. 1 ×1022 A m2 and it produces a field that on the Earth’s surface is about 0.5 Gauss.

  2. 2.

    They are called aurora borealis or northern lights, in the North, and aurora australis or southern lights in the South.

  3. 3.

    This line is due to a forbidden line of the oxygen atom. The production of forbidden lines in the upper atmosphere is favoured by the low density. Some atoms can remain in a metastable excited state for seconds or even hours, rather then radiating in \(1{0}^{-6}\mbox{ \textendash }1{0}^{-8}\,\mathrm{s}\). In laboratory experiments, an atom in a metastable state is usually de-excited by collisions with particles or with the wall of the vessel. At the low density prevailing above 100 km, however, the atom has a larger probability of remaining undisturbed long enough to radiate a forbidden quantum.

  4. 4.

    The most important C. Stoermer works on the motion of charged particles are: “Sur les trajectoires des corpuscules électrisés dans l’espace sous l’action du magnetisme terrestre” [8, 9]. “Ein Fundamentalproblem der Bewegung einer elektrisch geladenen Korpuskel im kosmischen Raume” [1012]; The book [13].

  5. 5.

    A treatment of these first Stoermer’s studies was by him made in the book [13].

  6. 6.

    New York Times, 5 February 1933.

  7. 7.

    Fig. 5.1 of [77].

  8. 8.

    A solar flare is a sudden liberation of energy from a localized region on Sun, in the form of electromagnetic radiation and usually also of energetic particles. Flares occur in active Sun regions, especially at the boundary zones between solar spots of opposite magnetic polarity; their frequency changes during the solar cycle in a similar way as the spots.

References

  1. M.W. McElhinny, Paleomagnetism and Plate Tectonics (Cambridge University Press, Cambridge, 1973)

    Google Scholar 

  2. P.H. Roberts, G.A. Glatzmaier, Rev. Mod. Phys. 72, 1081 (2000)

    Article  ADS  Google Scholar 

  3. G.A. Glatzmaier, P.H. Roberts, Phys. Earth Planet. Inter. 91, 63 (1995)

    Article  Google Scholar 

  4. G.A. Glatzmaier, P.H. Roberts, Nature 377, 203 (1995)

    Article  ADS  Google Scholar 

  5. R. Ladbury, Phys. Today 49, 17 (1996)

    ADS  Google Scholar 

  6. K. Birkeland, Arch. Sci. Phys. 1, 497 (1896)

    Google Scholar 

  7. K. Birkeland, Vid. selsk. Skr. 1 (1901)

    Google Scholar 

  8. C. Stoermer, “Sur les trajectoires des corpuscules électrisés dans l’espace sous l’action du magnetisme terrestre”. Arch. Sci. Phys. Genève 24, 5, 113, 221, 317 (1907)

    Google Scholar 

  9. C. Stoermer, “Sur les trajectoires des corpuscules électrisés dans l’espace sous l’action du magnetisme terrestre”. Arch. Sci. Phys. Genève 32, 117 (1911) (190, 277, 415, 501)

    Google Scholar 

  10. C. Stoermer, “Ein Fundamentalproblem der Bewegung einer elektrisch geladenen Korpuskel im kosmischen Raume”. Z. Astrophys. 3, 31 (1931) (227)

    Google Scholar 

  11. C. Stoermer, “Ein Fundamentalproblem der Bewegung einer elektrisch geladenen Korpuskel im kosmischen Raume”. Z. Astrophys. 4, 290 (1932)

    ADS  MATH  Google Scholar 

  12. C. Stoermer, “Ein Fundamentalproblem der Bewegung einer elektrisch geladenen Korpuskel im kosmischen Raume”. Z. Astrophys. 6, 333 (1933)

    ADS  MATH  Google Scholar 

  13. C. Stoermer, The Polar Aurora (Oxford University Press, UK, 1955)

    MATH  Google Scholar 

  14. P.S. Epstein, Phys. Rev. 53, 862 (1938)

    Article  ADS  Google Scholar 

  15. G. Lemaitre, M.S. Vallarta, Phys. Rev. 43, 87 (1933)

    Article  ADS  Google Scholar 

  16. G. Lemaitre, M.S. Vallarta, Phys. Rev. 49, 719 (1936)

    Article  ADS  MATH  Google Scholar 

  17. G. Lemaitre, M.S. Vallarta, Phys. Rev. 50, 493 (1936)

    Article  ADS  Google Scholar 

  18. L. Myssowsky, L. Tuwim, Z. Phys. 39, 146 (1926)

    Article  ADS  Google Scholar 

  19. E. Steinke, Z. Phys. 42, 570 (1927)

    Article  ADS  Google Scholar 

  20. C. Stoermer, Astrophys. Norveg. 1, 115 (1934)

    Google Scholar 

  21. C. Stoermer, Astrophys. Norveg. 2, 193 (1936)

    ADS  Google Scholar 

  22. C. Stoermer, Z. Astro. Phys. 1, 237 (1934)

    ADS  Google Scholar 

  23. P. Epstein, Proc. Nat. Acad. Sci. 16, 658 (1930)

    Article  ADS  MATH  Google Scholar 

  24. M.S. Vallarta, On the Allowed Cone of Cosmic Radiation (Toronto University Press, Toronto, Canada, 1938)

    Google Scholar 

  25. M.S. Vallarta, Handbuch der Physik, vol. XLVI/1 (Springer, Berlin, 1961), p. 88

    Google Scholar 

  26. E. Fermi, B. Rossi, Acc. Linc. Att. 17, 346 (1933)

    Google Scholar 

  27. T.H. Johnson, Rev. Mod. Phys. 10, 193 (1938)

    Article  ADS  Google Scholar 

  28. W.F.G. Swann, Phys. Rev. 44, 224 (1933)

    Article  ADS  Google Scholar 

  29. J. Clay, Proc. Ned. Akad.v.Wet. 30, 1115 (1927)

    Google Scholar 

  30. J. Clay, Proc. Ned. Akad.v.Wet. 31, 1091 (1928)

    Google Scholar 

  31. J. Clay, Proc. Ned. Akad.v.Wet. 33, 711 (1930)

    Google Scholar 

  32. R.A. Millikan, G.H. Cameron, Phys. Rev. 31, 163 (1928)

    Article  ADS  Google Scholar 

  33. R.A. Millikan, G.H. Cameron, Nature 121 (19 Suppl.) (1928)

    Google Scholar 

  34. R.A. Millikan, Rev. Mod. Phys. 21, 1 (1949) (at p. 4)

    Google Scholar 

  35. R.A. Millikan, Phys. Rev. 36, 1595 (1930)

    Article  ADS  Google Scholar 

  36. W. Bothe, W. Kolhoerster, Ber. Ber. 450 (1930)

    Google Scholar 

  37. K. Grant, Nature 127, 924 (1931)

    Article  ADS  Google Scholar 

  38. A. Corlin, Lund. Medd. 121 (1930)

    Google Scholar 

  39. G. Hoffmann, Phys. Z. 32, 633 (1932)

    Google Scholar 

  40. P. Galison, Centaurus 26, 262 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  41. A.H. Compton, Phys. Rev. 39, 190 (1932)

    Article  Google Scholar 

  42. A.H. Compton, Phys. Rev. 43, 387 (1933)

    Article  ADS  Google Scholar 

  43. A.H. Compton, J.M. Benade, P.G. Ledig, Phys. Rev. 45, 294 (1934)

    Article  Google Scholar 

  44. A.H. Compton, Phys. Rev. 41, 111 (1932)

    Article  ADS  Google Scholar 

  45. A.H. Compton, Phys. Rev. 41, 681 (1932)

    Article  ADS  Google Scholar 

  46. A.H. Compton, Phys. Rev. 42, 904 (1932)

    Google Scholar 

  47. R.D. Bennett, J.L. Dunham, E.H. Bramhall, P.K. Allen, Phys. Rev. 42, 446 (1932)

    Article  ADS  Google Scholar 

  48. J. Clay, H.P. Berlage, Naturwissenschaften 37, 687 (1932)

    Article  ADS  Google Scholar 

  49. G. Lemaitre, M.S. Vallarta, Phys. Rev. 42, 914 (1932)

    Google Scholar 

  50. A.H. Compton, R.N. Turner, Phys. Rev. 52, 799 (1937)

    Article  ADS  Google Scholar 

  51. R.A. Millikan, Phys. Rev. 43, 661 (1933)

    Article  ADS  Google Scholar 

  52. R.A. Millikan, H.V. Neher, Phys. Rev. 50, 15 (1936)

    Article  ADS  Google Scholar 

  53. R.A. Millikan, H.V. Neher, S.K. Haynes, Phys. Rev. 50, 992 (1936)

    Article  ADS  Google Scholar 

  54. R.A. Millikan, H.V. Neher, Phys. Rev. 47, 205 (1935)

    Article  ADS  Google Scholar 

  55. I.S. Bowen, R.A. Millikan, H.V. Neher, Phys. Rev. 52, 80 (1937)

    Article  ADS  Google Scholar 

  56. I.S. Bowen, R.A. Millikan, H.V. Neher, Phys. Rev. 53, 855 (1938)

    Article  ADS  Google Scholar 

  57. R.A. Millikan, H.V. Neher, W.H. Pickering, Phys. Rev. 63, 234 (1943)

    Article  ADS  Google Scholar 

  58. S.E. Forbush, Phys. Rev. 51, 1108 (1937)

    Article  ADS  Google Scholar 

  59. S. Kusawa, Phys. Rev. 67, 50 (1945)

    Article  ADS  Google Scholar 

  60. B. Rossi, Phys. Rev. 36, 606 (1930)

    Article  ADS  Google Scholar 

  61. B. Rossi, Cosmic Rays (McGraw Hill, New York, 1964)

    Google Scholar 

  62. B. Rossi, Rend. Lincei 13, 47 (1931)

    Google Scholar 

  63. B. Rossi, Nuovo Cimento 8, 85 (1931)

    Article  MATH  Google Scholar 

  64. E. Fermi, B. Rossi, Rend. Lincei 17, 346 (1933)

    Google Scholar 

  65. B. Rossi, Phys. Rev. 45, 212 (1934)

    Article  ADS  Google Scholar 

  66. B. Rossi, Ric. Sci. 5, 569 (1934)

    Google Scholar 

  67. T.H. Johnson, Phys. Rev. 43, 834 (1933)

    Article  ADS  Google Scholar 

  68. L. Alvarez, A.H. Compton, Phys. Rev. 43, 835 (1933)

    Article  ADS  Google Scholar 

  69. T.H. Johnson, J.C. Street, Phys. Rev. 43, 381 (1933)

    Google Scholar 

  70. T.H. Johnson, J. Franklin Inst. 214, 689 (1932)

    Google Scholar 

  71. T.H. Johnson, Phys. Rev. 48, 290 (1935)

    Article  ADS  Google Scholar 

  72. R.A. Millikan, H.V. Neher, Proc. Nat. Acad. Sci. 21, 313 (1935)

    Article  ADS  Google Scholar 

  73. R.A. Millikan, H.V. Neher, Phys. Rev. 21, 313 (1935)

    Google Scholar 

  74. J. Clay, P.M. van Alphen, C.G. ’T. Hooft, Physica 1, 829 (1934)

    Google Scholar 

  75. J. Clay, E.M. Bruns, J.T.J. Wiersma, Physica 3, 746 (1936)

    Article  Google Scholar 

  76. V.F. Hess, J. Eugster, Cosmic Radiation and its Biological Effects (Fordham University Press, New York, 1949)

    Google Scholar 

  77. S.E. Forbush, Phys. Rev. 51, 1108 (1937)

    Article  ADS  Google Scholar 

  78. S.E. Forbush, Phys. Rev. 54, 975 (1938)

    Article  ADS  Google Scholar 

  79. S.E. Forbush, Terr. Magn. 43, 203 (1938)

    Article  Google Scholar 

  80. S.E. Forbush, Rev. Mod. Phys. 11, 168 (1939)

    Article  ADS  Google Scholar 

  81. V.F. Hess, A. Demmelmair, Nature 140, 316 (1937)

    Article  ADS  Google Scholar 

  82. V.F. Hess, R. Steinmaurer, A. Demmelmair, Nature 141, 686 (1938)

    Article  ADS  Google Scholar 

  83. I. Lange, S.E. Forbush, Terr. Magn. 47, 331 (1942)

    Article  Google Scholar 

  84. S.E. Forbush, Phys. Rev. 70, 771 (1946)

    Article  ADS  Google Scholar 

  85. A. Ehmert, Z. Naturforsch. 3a, 264 (1948)

    Google Scholar 

  86. S.E. Forbush, J. Geophys. Res. 63, 651 (1958)

    Article  ADS  Google Scholar 

  87. S.E. Forbush, J. Geophys. Res. 59, 525 (1954)

    Article  ADS  Google Scholar 

  88. J.A. Simpson, K.B. Frenton, J. Katzman, D.C. Rose, Phys. Rev. 102, 1648 (1956)

    Article  ADS  Google Scholar 

  89. K. Rypdal, T.B. Brundtland, J. Phys. III (Suppl. 7), C4-113 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Bertolotti .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bertolotti, M. (2013). The Earth’s Magnetic Field and the Geomagnetic Effects. In: Celestial Messengers. Astronomers' Universe. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28371-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28371-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28370-3

  • Online ISBN: 978-3-642-28371-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics