Skip to main content

Optical Bistability, Optical Computing, Spintronics and Quantum Computing

  • Chapter
  • First Online:
Semiconductor Optics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 6618 Accesses

Abstract

In this chapter we present some of the properties of optical bistability, an effect that is not limited to semiconductors, and some of the concepts of digital optical computing. This concept is based on optical nonlinearities and bi- or multistability. We also explain why digital optical computing did not make its way into broad commercial use. Then we proceed to spintronics and quantum computing. The latter concept especially relies, to a limited extent only, on semiconductor optics. We introduce these ideas here because the author feels that beautiful physics has been accomplished in all three fields, though he also sees strong analogies to the development and the fate of the concept of digital optical computing for the combinations of semiconductor optics with spintronics and quantum computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Ikeda, H. Daido, O. Akimoto, Phys. Rev. Lett. 45, 709 (1980)

    ADS  Google Scholar 

  2. Ch.M. Bowden, M. Ciftan, H.R. Robl (eds.), Optical Bistability (Plenum, New York, 1980)

    Google Scholar 

  3. D.A.B. Miller, IEEE J. Quantum Electron. 17, 306 (1981)

    ADS  Google Scholar 

  4. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981); Semiconductor Devices, Physics and Technology, 2nd edn. (2002)

    Google Scholar 

  5. K. Ikeda, H. Daido, O. Akimoto, Phys. Rev. Lett. 48, 617 (1982)

    MathSciNet  ADS  Google Scholar 

  6. H. Haken, Synergetics, an Introduction. Springer Series Synergetics, vol. 1 and subsequent volumes (Springer, Berlin/Heidelberg, 1983)

    Google Scholar 

  7. K. Bohnert, H. Kalt, C. Klingshirn, Appl. Phys. Lett. 43, 1088 (1983)

    ADS  Google Scholar 

  8. F. Henneberger, H. Rossmann, Phys. Status Solidi (b) 121, 685 (1984)

    Google Scholar 

  9. S.W. Koch, Dynamics of First-Order Phase Transitions in Equilibrium and Nonequilibrium Systems. Lecture Notes in Physics, vol. 207 (Springer, Berlin/Heidelberg, 1984)

    Google Scholar 

  10. D.A.B. Miller, J. Opt. Soc. Am. B1, 857 (1984)

    ADS  Google Scholar 

  11. P.Ch.M. Bowden, H.M. Gibbs, S.L. McCall (eds.), Optical Bistability II (Plenum, New York, 1984)

    Google Scholar 

  12. B.S. Wherrett, S.D. Smith (eds.),Optical Bistability, Dynamical Nonlinearity and Photonic Logic (The Royal Society/Cambridge University Press, Cambridge, 1984)

    Google Scholar 

  13. H.M. Gibbs, Optical Bistability, Controlling Light with Light (Academic, New York, 1985)

    Google Scholar 

  14. G.H. Doehler, IEEE J. Quantum Electron. 22, 1682 (1986)

    ADS  Google Scholar 

  15. F. Henneberger, Phys. Status Solidi 137, 371 (1986)

    Google Scholar 

  16. M. Lindberg, S.W. Koch, H. Haug, J. Opt. Soc. Am. B 3, 751 (1986)

    ADS  Google Scholar 

  17. J.V. Moloney, Phys. Rev. A 33, 4061 (1986)

    ADS  Google Scholar 

  18. P. Mandel, N. Peyghambarian, S.D. Smith (eds.), Optical Bistability III. Springer Proceedings in Physics, vol. 8 (Springer, Berlin/Heidelberg, 1986)

    Google Scholar 

  19. M. Wegener et al., Semicond. Sci. Technol. 1, 366 (1986)

    ADS  Google Scholar 

  20. P. Mandel, S.D. Smith, B. Wherett (eds.), From Optical Bistability Towards Optical Computing (North-Holland, Amsterdam, 1987)

    Google Scholar 

  21. F. Forsmann, D. Jäger, W. Niessen, Opt. Commun. 62, 193 (1987)

    ADS  Google Scholar 

  22. I. Galbraith, H. Haug, J. Opt. Soc. Am. B 4, 1116 (1987)

    ADS  Google Scholar 

  23. C. Klingshirn, in From Optical Bistability Towards Optical Computing, ed. by P. Mandel, S.D. Smith, B. Wherett (North-Holland, Amsterdam, 1987)

    Google Scholar 

  24. M. Wegener, C. Klingshirn, Phys. Rev. A 35, 1740, 4247 (1987)

    ADS  Google Scholar 

  25. M. Wegener, C. Klingshirn, G. Müller-Vogt, Z. Phys. B 68, 519 (1987)

    ADS  Google Scholar 

  26. S.V. Bogdanov, V.G. Lyssenko, Sov. Tech. Phys. Lett. 14, 270 (1988)

    Google Scholar 

  27. T. Brand, H.J. Eichler, B. Smandek, SPIE Proc. 1017, 200 (1988)

    ADS  Google Scholar 

  28. D.S. Chemla, D.A.B. Miller, S. Schmitt-Rink, in Optical Nonlinearities and Instabilities in Semiconductors, ed. by H. Haug (Academic, New York, 1988), p. 83

    Google Scholar 

  29. H.J. Eichler et al., SPIE Proc. 1017, 90 (1988)

    ADS  Google Scholar 

  30. S.W. Koch, in  Optical Nonlinearities and Instabilities in Semiconductors, ed. by H. Haug (Academic, New York, 1988), p 273

    Google Scholar 

  31. W. Firth, N. Peyghambarian, A. Tallet, (eds.), Optical Bistability IV (les Editions de Physique, Les Ulis Cedex, 1988); J. Phys. Paris 49 (C2 suppl. au no. 6) (1988)

    Google Scholar 

  32. H. Haug, L. Banyai (eds.), Optical Switching in Low-Dimensional Solids. NATO ASI Series B, vol. 194 (Plenum, New York, 1988)

    Google Scholar 

  33. H. Haug (ed.), Optical Nonlinearities and Instabilities in Semiconductors (Academic, New York, 1988)

    Google Scholar 

  34. T.K. Gustafson, P.W. Smith (eds.), Photonic Switching. Springer Series in Electronics and Photonics, vol. 25 (Springer, Berlin, 1988)

    Google Scholar 

  35. H.G. Schuster, Deterministic Chaos, 2nd edn. (Physik Verlag, Weinheim, 1988)

    Google Scholar 

  36. A. Witt et al., IEEE J. Quantum Electron. 24, 2500 (1988)

    ADS  Google Scholar 

  37. D.A.B. Miller, in Optical Bistability IV, ed. by W. Firth, N. Peyghambarian, A. Tallet (les Editions de Physique, Les Ulis Cedex, 1988); J. Phys. Paris 49 (C2 suupl. au no. 6) (1988), pp. 55, 71

    Google Scholar 

  38. B.S. Wherett, F.A.P. Tooley (eds.), Optical Computing. The Scottish Universities Summer School in Physics, vol. 34 (Edinburgh University Press, Edinburgh, 1989)

    Google Scholar 

  39. S. Datta, B. Das, Appl. Phys. Lett. 56, 656 (1990)

    ADS  Google Scholar 

  40. J. Grohs et al., Opt. Commun. 78, 77 (1990)

    ADS  Google Scholar 

  41. V. Kazukauskas et al., Z. Phys. B 79, 149 (1990)

    ADS  Google Scholar 

  42. J. Grohs, H. Issler, C. Klingshirn, Opt. Commun. 86, 183 (1991)

    ADS  Google Scholar 

  43. K.J. Ebeling, Integrierte Optoelektronik, 2nd edn. (Springer, Berlin/Heidelberg, 1992)

    Google Scholar 

  44. J. Grohs et al., Int. J. Bifurc. Chaos 2, 861 (1992)

    MATH  Google Scholar 

  45. J. Grohs et al., SPIE Proc. 1807, 192 (1992)

    ADS  Google Scholar 

  46. C. Klingshirn, J. Grohs, M. Wegener, in Nonlinear Dynamics in Solids, ed. by H. Thomas (Springer, Berlin, 1992)

    Google Scholar 

  47. H. Thomas (ed.), Nonlinear Dynamics in Solids (Springer, Berlin, 1992)

    Google Scholar 

  48. D. Burak et al., Opt. Mater. 2, 83 (1993)

    ADS  Google Scholar 

  49. J. Cibert et al., Phys. Scr. T 49, B487 (1993)

    ADS  Google Scholar 

  50. N. Linder et al., Appl. Phys. Lett. 62, 1916 (1993)

    ADS  Google Scholar 

  51. S.D. Smith, R.F. Neale (eds.), Optical Information Technology. Esprit Basic Research Series (Springer, Berlin, 1993)

    Google Scholar 

  52. U. Zimmermann et al., in Optical Information Technology, ed. by S.D. Smith, R.F. Neale. Esprit Basic Research Series (Springer, Berlin, 1993)

    Google Scholar 

  53. U. Zimmermann et al., Semicond. Sci. Technol. 8, 1399 (1993)

    ADS  Google Scholar 

  54. D. Burak et al., Int. J. Nonlinear Opt. Phys. 3, 1 (1994)

    Google Scholar 

  55. J. Grohs et al., Phys. Rev. A 49, 2199 (1994)

    ADS  Google Scholar 

  56. W. Langbein et al., J. Cryst. Growth 138, 191 (1994)

    ADS  Google Scholar 

  57. F. Zhang et al., Int. J. Bifurc. Chaos 4, 1375 (1994)

    MATH  Google Scholar 

  58. A. Barenco et al., Phys. Rev. Lett. 74, 4083 (1995)

    ADS  Google Scholar 

  59. D.P. Di Vincenco, Science 270, 255 (1995)

    MathSciNet  ADS  Google Scholar 

  60. J. Grohs et al., Z. Phys. B 98, 133 (1995)

    ADS  Google Scholar 

  61. V. Kazukauskas et al., Opt. Commun. 122, 83 (1995); Phys. Status Solidi (b) 187, 241 (1995)

    Google Scholar 

  62. Y. Nishikawa et al., Appl. Phys. Lett. 66, 839 (1995)

    ADS  Google Scholar 

  63. Q.A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995)

    MathSciNet  ADS  Google Scholar 

  64. S.A. Croober et al., Phys. Rev. Lett. 77, 2814 (1996)

    ADS  Google Scholar 

  65. T. Amand, Phys. Rev. Lett. 78, 1355 (1997)

    ADS  Google Scholar 

  66. J.M. Kikkawa et al., Science 277, 1284 (1997)

    Google Scholar 

  67. A. Tackeuchi, O. Wada, Y. Nishikawa, Appl. Phys. Lett. 70, 1131 (1997)

    ADS  Google Scholar 

  68. C. Denz, Optical Neuronal Networks (Vieweg, Braunschweig, 1998)

    Google Scholar 

  69. D. Hägele et al., Appl. Phys. Lett. 73, 1580 (1998)

    ADS  Google Scholar 

  70. J.M. Kikkawa, D.D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998)

    ADS  Google Scholar 

  71. B.E. Kane, Nature 393, 133 (1998)

    ADS  Google Scholar 

  72. D. Loss, D.P. Di Vincenco, Phys. Rev. A 57, 120 (1998)

    ADS  Google Scholar 

  73. G.A. Prinz, Science 282, 1660 (1998)

    Google Scholar 

  74. A. Steane, Rep. Prog. Phys. 61, 117 (1998)

    MathSciNet  ADS  Google Scholar 

  75. D.D. Awschalon, J.M. Kikkawa, Phys. Today 6, 33 (1999)

    Google Scholar 

  76. R. Fiederling et al., Nature 402, 787 (1999)

    ADS  Google Scholar 

  77. J.M. Kikawa, D.D. Awschalom, Nature 397, 139 (1999)

    ADS  Google Scholar 

  78. Y. Makhlin, G. Schön, A. Shnirman, Nature 398, 305 (1999)

    ADS  Google Scholar 

  79. M. Oestreich et al., Appl. Phys. Lett. 74, 1251 (1999)

    ADS  Google Scholar 

  80. Y. Ohno et al., Phys. Rev. Lett. 83, 4196 (1999); Nature 402, 791 (1999)

    Google Scholar 

  81. S.S.P. Parkin et al., J. Appl. Phys. 85, 5828 (1999)

    ADS  Google Scholar 

  82. S. Zimmermann et al., Science 283, 1292 (1999)

    ADS  Google Scholar 

  83. H. Akinaga et al., Appl. Phys. Lett. 76, 97 (2000)

    ADS  Google Scholar 

  84. R.D.R. Bhat, J.E. Sipe, Phys. Rev. Lett. 85, 5432 (2000)

    ADS  Google Scholar 

  85. G. Burkard, H.-A. Engel, D. Loss, Fortschr. Phys. 48, 965 (2000)

    Google Scholar 

  86. B.T. Jonker et al., Phys. Rev. B 62, 8180 (2000)

    ADS  Google Scholar 

  87. C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)

    ADS  Google Scholar 

  88. H. Kalt et al., J. Cryst. Growth 214/215, 630 (2003); Phys. Status Solidi (b) 221, 477 (2000)

    Google Scholar 

  89. H. Ohno et al., Nature 408, 944 (2000)

    ADS  Google Scholar 

  90. B. Beschoten et al., Phys. Rev. B 63, 121202 (2001)

    ADS  Google Scholar 

  91. M. Bayer et al., Science 219, 451 (2001)

    ADS  Google Scholar 

  92. B.E. Cole et al., Nature 410, 60, (2001)

    ADS  Google Scholar 

  93. D.P. DiVincenzo, Quantum Inf. Comput. 1, 1 (2001)

    MathSciNet  Google Scholar 

  94. M. Ghali et al., Solid State Commun. 119, 371 (2001)

    ADS  Google Scholar 

  95. D. Hägele et al., Solid State Commun. 120, 73 (2001)

    ADS  Google Scholar 

  96. M. Oestreich et al., Festkörperpbrobleme/Adv. Solid State Phys. 41, 173 (2001)

    ADS  Google Scholar 

  97. J.S. Sandhu et al., Phys. Rev. Lett. 86, 2150 (2001)

    ADS  Google Scholar 

  98. G. Salis et al., Nature 414, 619, (2001)

    ADS  Google Scholar 

  99. S. Cortez et al., Phys. Rev. Lett. 89, 207401 (2002)

    ADS  Google Scholar 

  100. M.A. Nielsen, Sci. Am. 287(5), 66 (2002)

    ADS  Google Scholar 

  101. D.D. Awschalom, D. Loss, N. Samarath (eds.), Semiconductor Spintronics and Quantum Computing (Springer, Berlin, 2002)

    Google Scholar 

  102. H. Ohno (ed.), Semiconductor Spintronics. Special Issue, Semiconductor Science and Technology, vol. 17 (Institute of Physics Publication, Bristol, 2002), p. 275

    Google Scholar 

  103. R.M. Stevensen et al., Phys Rev. B 66, 081302 (R) (2002)

    Google Scholar 

  104. C. Santori et al., Nature 419, 594 (2002)

    ADS  Google Scholar 

  105. A. Zrenner et al., Nature 418, 612 (2002)

    ADS  Google Scholar 

  106. M. Albrecht, J.-U. Thiele, A. Moser, Phys. J. 2(10), 25 (2003)

    Google Scholar 

  107. M.I. Dyakonov, Optika i Spektroskopiya 95, 279 (2003)

    Google Scholar 

  108. J. Hübner et al., Phys. Rev. Lett. 90, 216601 (2003); Phys. Status Solidi (a) 195, 3 (2003)

    Google Scholar 

  109. E. Pazy et al., Phys. Status Solidi (b) 238, 411 (2003)

    Google Scholar 

  110. A. Leggett, B. Ruggiero, P. Silvestrini (eds.), Quantum Computing and Quantum Bits in Mesoscopic Systems (Kluwer, Dordrecht, 2003)

    Google Scholar 

  111. E.I. Rashba, Al.L. Efros, Appl. Phys. Lett. 83, 5295 (2003)

    Google Scholar 

  112. M.J. Stevens et al., Phys. Rev. Lett. 90, 136603 (2003)

    ADS  Google Scholar 

  113. E. Tsitsishivili, R.V. Baltz, H. Kalt, Phys. Rev. B 67, 205330 (2003)

    ADS  Google Scholar 

  114. A. Baas et al., Phys. Rev. A 69, 023809 (2004)

    ADS  Google Scholar 

  115. G. Dasbach et al., Phys. Rev. B 70, 121202 (2004)

    ADS  Google Scholar 

  116. J.M. Elzerman et al., Nature 430, 431 (2004)

    ADS  Google Scholar 

  117. M. Krontvar et al., Nature 432, 81 (2004)

    ADS  Google Scholar 

  118. D.D. Awschalom et al. (eds.), Spin Electronics (Kluwer, Dordrecht, 2004)

    Google Scholar 

  119. S.A. Solin, Sci. Am. 291, 45 (2004)

    Google Scholar 

  120. X. Hu, B. Koiller, S. Das Sarma, Phys. Rev. B 71, 235332 (2005)

    ADS  Google Scholar 

  121. J.R. Petta et al., Science 309, 2180 (2005)

    ADS  Google Scholar 

  122. S. Stufler et al., Phys. Rev. B 72, 121301 (R) (2005)

    Google Scholar 

  123. L. Childress et al., Science 314, 281 (2006)

    ADS  Google Scholar 

  124. T. Gaebel et al., Nat. Phys. 2, 408 (2006)

    Google Scholar 

  125. M. Hetterich et al., Phys. Status Solidi B 243, 3557 (2006); Habilitation thesis, Karlsruhe, 2007

    Google Scholar 

  126. B. Koiller, X. Hu, S. Das Sarma, Phys. Rev. B 73, 045319 (2006)

    ADS  Google Scholar 

  127. W. Löffler et al., Appl. Phys. Lett. 88, 062105 (2006)

    ADS  Google Scholar 

  128. W. Langbein, Nat. Mater. 5, 519 (2006)

    ADS  Google Scholar 

  129. K. Yu. Zenkova et al., Opt. Spectrosc. 101, 731 (2006)

    ADS  Google Scholar 

  130. D.D. Awshalom, R. Epstein, R. Hanson, Sci. Am. 297, 84 (2007)

    Google Scholar 

  131. M.V.G. Dutt et al., Science 316, 1312 (2007)

    Google Scholar 

  132. T. Wink et al., Science 317, 488 (2007)

    ADS  Google Scholar 

  133. S. Aaronson, Sci. Am. 298(3), 62 (2008)

    MathSciNet  Google Scholar 

  134. K. Edamatsu, Nature 456, 182 (2008)

    ADS  Google Scholar 

  135. S. Halm et al., J. Phys. D 41, 164007 (2008)

    ADS  Google Scholar 

  136. H. Kosaka et al., Nature 457, 702 (2009)

    ADS  Google Scholar 

  137. M. Stoneham, Physics 2, 34 (2009)

    Google Scholar 

  138. Y.S. Chen et al., Phys. Status Solidi B 247, 1505 (2010)

    ADS  Google Scholar 

  139. M. Leidinger, in Frankfurter Allgem. Zeitung, 09. 09. 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klingshirn, C.F. (2012). Optical Bistability, Optical Computing, Spintronics and Quantum Computing. In: Semiconductor Optics. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28362-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28362-8_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28361-1

  • Online ISBN: 978-3-642-28362-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics