Skip to main content

From Cavity Polaritons to Photonic Crystals

  • Chapter
  • First Online:
Semiconductor Optics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 6672 Accesses

Abstract

In this chapter we return briefly to the concept of a Fabry–Perot resonatorin the form of a (micro) cavityand then proceed to the cavity polaritons as a mixed state between a resonance in a solid (these are generally exciton resonances in quantum wells, wires or dots) and a cavity resonance. From there we reach, via different paths, the presently very active and potentially application-relevant field of photonic crystals with a subspecies known as photonic band gap materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.W. Oseen, Ann. der Phys. 69, 202 (1922)

    ADS  Google Scholar 

  2. E.M. Purcell, Phys. Rev. 69, 681 (1946)

    Google Scholar 

  3. U.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    ADS  Google Scholar 

  4. V. Bykov, JETP 35, 269 (1972); Quantum Electron. 4, 861 (1975)

    Google Scholar 

  5. P.St.J. Russell, Appl. Phys. B 39, 231 (1986)

    Google Scholar 

  6. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    ADS  Google Scholar 

  7. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    ADS  Google Scholar 

  8. J.W.S. Rayleigh, Philos. Mag. 26, 256 (1888)

    MATH  Google Scholar 

  9. A. Thelen, The Design of Optical Interference Coatings (Mc Graw Hill, New York, 1989)

    Google Scholar 

  10. E. Yablonovitch, T.J. Gnütter, K.M. Leung, Phys. Rev. Lett. 67, 2295 (1991)

    ADS  Google Scholar 

  11. C. Janot, Quasicrystals (Clarendon Press, Oxford, 1992)

    Google Scholar 

  12. C. Weisbuch et al., Phys. Rev. Lett. 69, 3314 (1992)

    ADS  Google Scholar 

  13. R. Houdré et al., Phys. Rev. Lett. 73, 2043 (1994)

    ADS  Google Scholar 

  14. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995)

    MATH  Google Scholar 

  15. P. Kelkar et al., Phys. Rev. B 52, R5491 (1995)

    ADS  Google Scholar 

  16. V. Savona et al., Solid State Commun. 93, 733 (1995)

    ADS  Google Scholar 

  17. H. Übbing et al., Il Nuovo Cimento 17D, 1753 (1995)

    ADS  Google Scholar 

  18. J. Rarity, C. Weinsbuch (eds.), Microcavities and Photonic Band gaps: Physics and Applications. NATO ASI Series E, vol. 324 (Kluwer, Amsterdam, 1996)

    Google Scholar 

  19. C.M. Soukoulis (ed.), Photonic Bandgap Materials. NATO ASI Series E, vol. 315 (Kluwer, Amsterdam, 1996)

    Google Scholar 

  20. J.S. Faresi et al., Nature 390, 143 (1997)

    ADS  Google Scholar 

  21. J.P. Reithmaier et al., Phys. Rev. Lett. 78, 378 (1997)

    ADS  Google Scholar 

  22. K. Busch, S. John, Phys. Rev. E 58, 3896 (1998)

    ADS  Google Scholar 

  23. A. Birner et al., Phys. Status Solidi (a) 165, 111 (1998)

    Google Scholar 

  24. M. Bayer et al., Phys. Rev. Lett. 81, 2582 (1998)

    ADS  Google Scholar 

  25. S. Bidnyk et al., Appl. Phys. Lett. 73, 2242 (1998)

    ADS  Google Scholar 

  26. T. Gutbrod et al., Phys. Rev. B 57, 9950 (1998)

    ADS  Google Scholar 

  27. J.M. Gerard et al., Phys. Rev. Lett. 81, 1110 (1998)

    ADS  Google Scholar 

  28. D. Labilloy et al., Appl. Phys. Lett. 73, 1314 (1998)

    ADS  Google Scholar 

  29. U. Neukirch et al., Phys. Rev. B 57, 9208 (1998)

    MathSciNet  ADS  Google Scholar 

  30. F. Quochi et al., J. Cryst. Growth 184/185, 754 (1998)

    Google Scholar 

  31. V. Savona, J. Cryst. Growth 184/185, 737 (1998)

    Google Scholar 

  32. L.C. Andreani, G. Panzarini, Phys. Rev. B 60, 13276 (1999)

    ADS  Google Scholar 

  33. A. Birner, K. Busch, F. Müller, Phys. Bl. 55(1), 27 (1999)

    Google Scholar 

  34. K. Busch, Phys. Bl 55(4), 27 (1999)

    Google Scholar 

  35. M. Bayer et al., Phys. Rev. Lett. 83, 5374 (1999)

    ADS  Google Scholar 

  36. C. Constantin et al., Phys. Rev. B 59, R7809 (1999); Mater. Sci. Eng. B 74, 158 (2000)

    Google Scholar 

  37. T. Gutbrod et al., Phys. Rev. B 59, 2223 (1999)

    ADS  Google Scholar 

  38. B. Gayral et al., Appl. Phys. Lett. 75, 1908 (1999)

    ADS  Google Scholar 

  39. S. John, K. Busch, J. Lightwave Technol. IEEE 17, 1931 (1999)

    ADS  Google Scholar 

  40. H.X. Jiang, J.Y. Lin, K.C. Zeng, Appl. Phys. Lett. 75, 763 (1999)

    ADS  Google Scholar 

  41. G. Khitrova et al., Rev. Mod. Phys. 71, 1591 (1999)

    ADS  Google Scholar 

  42. S. Rudin, T.L. Reinecke, Phys. Rev. B 59, 13276 (1999)

    Google Scholar 

  43. C. Constantin et al., Mater. Sci. Eng. B 74, 158 (2000)

    Google Scholar 

  44. Physics of Light Matter Coupling in Nanostructures (PLMCN) Intern. Conf. Series starting (2001) in Rome and reaching the 13th Conf. in Hangzhou (2012)

    Google Scholar 

  45. Yu. Vlasov, J. Appl. Phys. 76, 1627 (2000)

    Google Scholar 

  46. M.E. Zoorob et. al., Nature 404, 740 (2000)

    Google Scholar 

  47. S. Arnold, American Scientist 89, 414 (2001)

    ADS  Google Scholar 

  48. M.V. Artemyev, U. Woggon, R. Wannemacher, Appl. Phys. Lett. 78, 1032 (2001)

    ADS  Google Scholar 

  49. M. Bayer, Phys. Bl. 57(7/8), 75 (2001)

    Google Scholar 

  50. A. Blanco et al., Appl. Phys. Lett. 78, 3181 (2001)

    ADS  Google Scholar 

  51. M. Bayer et al., Phys. Rev. Lett. 86, 3168 (2001)

    ADS  Google Scholar 

  52. G. Guttroff et al., Phys. Rev. E 63, 36611 (2001)

    ADS  Google Scholar 

  53. C. Klingshirn, in Advances in Energy Transfer Processes, ed. by B. Di Bartolo, X. Chen (World Scientific, Singapore, 2001), p. 165

    Google Scholar 

  54. E. Moreau et al., Appl. Phys. Lett. 79, 2865 (2001)

    ADS  Google Scholar 

  55. S.G. Ramanov et al., Appl. Phys. Lett. 79, 731 (2001)

    ADS  Google Scholar 

  56. K. Sakoda, Optical Properties of Phontic Crystals (Springer, Berlin, 2001)

    Google Scholar 

  57. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    ADS  Google Scholar 

  58. M. Artemyev, U. Woggon, W. Langbein, Phys. Status Solidi B 229, 423 (2002)

    ADS  Google Scholar 

  59. V.G. Golubev et al., J. Non-Cryst. Solids 299-302, 1062 (2002)

    Google Scholar 

  60. G. Guttroff et al., Phys. Rev. B 64, 155313 (2002)

    ADS  Google Scholar 

  61. C. Herrmann, O. Hess, JOSA B 19, 3013 (2002)

    ADS  Google Scholar 

  62. M. Kazes et al., Adv. Mater. 14, 317 (2002)

    ADS  Google Scholar 

  63. B. Möller et al., Appl. Phys. Lett. 80, 3253 (2002) and to be published (2004)

    Google Scholar 

  64. C. Santori et al., Nature 419, 594 (2002)

    ADS  Google Scholar 

  65. A. Ueta et al. Phys. Status Solidi B 229, 971 (2002)

    ADS  Google Scholar 

  66. R. v. Baltz, NATO Sci. Ser. II 90, 91 (2003)

    Google Scholar 

  67. V. Babin et al., Appl. Phys. Lett. 82, 1553 (2003)

    ADS  Google Scholar 

  68. A. Chxist et al., Phys. Rev. Lett. 91, 183901 (2003)

    ADS  Google Scholar 

  69. A. Huynh et al., Phys. Rev. B 68, 165340 (2003)

    ADS  Google Scholar 

  70. A. Kakovin, G. Malpuech, Cavity Polaritons (Elsevier, Amsterdam, 2003)

    Google Scholar 

  71. Yu.V. Miklayev et al., Appl. Phys. Lett. 82, 12846 (2003)

    Google Scholar 

  72. B. Möller et al., Appl. Phys. Lett. 83, 2686 (2003)

    ADS  Google Scholar 

  73. K. Busch, R. Wehrspohn (eds.), Photonic crystals: optical materials for the 21th century. Phys. Status Solidi A 197(3) (2003)

    Google Scholar 

  74. V.V. Popov, T.V. Teperik, N.J.M. Horning, Sol. State Commun. 127, 589 (2003) and J. Lumin. 112, 225 (2005)

    Google Scholar 

  75. R.E. Slusher, B.J. Eggleton, Nonlinear Photonic Crystals (Springer, Berlin/Heidelberg, 2003)

    Google Scholar 

  76. Z.L. Wang et al., Phys. Rev. E 67, 16612 (2003)

    ADS  Google Scholar 

  77. V.M. Agranovich, Y.R. Shen, R.H. Baughman, Phys. Rev. B 69, 165112 (2004); J. Lumin 110, 167 (2004)

    Google Scholar 

  78. M. Deubel et al., Nat. Mater. 3, 444 (2004)

    ADS  Google Scholar 

  79. H.M. Gibbs in Optics of Semiconductors and Their Nanostructures, H. Kalt, M. Hetterich eds., Springer Series in Solid-State Science, vol. 146 (2004), p. 189

    Google Scholar 

  80. S. Linden et al., Science 306, 1351 (2004)

    ADS  Google Scholar 

  81. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)

    ADS  Google Scholar 

  82. A. Schuster, An Introduction to the Theory of Optics (Edward Arnold, London, 1904)

    MATH  Google Scholar 

  83. K. Sirinivasan et al., Phys. Rev. B 70, 081306 (2004) Science 325, 297 (2009)

    Google Scholar 

  84. J.P. Reithmaier et al., Nature 432, 197 (2004)

    ADS  Google Scholar 

  85. H.Y. Ryu et al., Appl. Phys. Lett. 84, 1067 (2004)

    ADS  Google Scholar 

  86. J. Wiersig et al., IEEE Proc. IQEC 3, (2004); QELS 543 (2005)

    Google Scholar 

  87. T. Yoshie et al., Nature 432, 200 (2004)

    ADS  Google Scholar 

  88. T.G. Euser, W.L. Vos, J. Appl. Phys. 97, 043102 (2005)

    ADS  Google Scholar 

  89. A.F. Koenderink, A. Lagendijk, W.L. Vos, Phys. Rev. B 72, 153102 (2005)

    ADS  Google Scholar 

  90. A. Löffler et al., Appl. Phys. Lett. 86, 111105 (2005)

    ADS  Google Scholar 

  91. E. Peter et al., Phys. Rev. Lett. 95, 067401 (2005)

    ADS  Google Scholar 

  92. I.C. Robin et al., Appl. Phys. Lett. 87, 233114 (2005)

    ADS  Google Scholar 

  93. O. Sydoruk et al., Appl. Phys. Lett. 87, 72501 (2005); Phys. Rev. B 73, 224406 (2006)

    Google Scholar 

  94. V.V. Temnov, U. Woggon, Phys. Rev. Lett. 95, 243602 (2005)

    ADS  Google Scholar 

  95. S. Varoutsis Opt. Express, et al., Phys. Rev. B 72, 041303R (2005)

    Google Scholar 

  96. A. Arseault et al., Adv. Mater. 18, 2779 (2006)

    Google Scholar 

  97. S. Arnold, O. Gaathon, NATO ASI Ser. II 231, 1 (2006)

    Google Scholar 

  98. P. Bermel et al., Phys. Rev. A 74, 043818 (2006)

    ADS  Google Scholar 

  99. G. Dolling et al., Science 312, 892 (2006)

    ADS  Google Scholar 

  100. B. Freedman et al., Nature 440, 1166 (2006)

    ADS  Google Scholar 

  101. E. Feltin et al., Appl. Phys. Lett. 89, 071107 (2006)

    ADS  Google Scholar 

  102. R. Hauschild, H. Kalt, Appl. Phys. Lett. 89, 123107 (2006)

    ADS  Google Scholar 

  103. S. Linden and M. Wegener, Priv. Commun. (2006) and Phys. J. 5(12), 29 (2006) and T. Ergine, M. Wegener ibid. 11(5), 31 (2012)

    Google Scholar 

  104. J.E. Kielbasa et al., in EXCON 06, Winston-Salem (2006)

    Google Scholar 

  105. G. Khitrova et al., Nat. Phys. 2, 81 (2006)

    Google Scholar 

  106. H. Lohmeyer et al., Appl. Phys. Lett. 88, 051101 (2006)

    ADS  Google Scholar 

  107. H. Lohmeyer et al., Phys. Status. Solidi B 243, 844 (2006)

    ADS  Google Scholar 

  108. N. Le Thomas et al., Nano Lett. 6, 557 (2006)

    ADS  Google Scholar 

  109. A. Ledermann et al., Nat. Mater. 5, 942 (2006)

    ADS  Google Scholar 

  110. J.B. Pendry, D.R. Smith, Sci. Am. 295(1), 60 (2006)

    ADS  Google Scholar 

  111. I.R. Sellers et al., Phys. Rev. B 74, 193206 (2006)

    Google Scholar 

  112. M.Y. Su, R.P. Mirin, Appl. Phys. Lett. 89, 033105 (2006)

    ADS  Google Scholar 

  113. D. Schurig, Science, 314, 977 (2006)

    MathSciNet  ADS  Google Scholar 

  114. E. Shamonina, Phys. J. 5(8/9), 51 (2006)

    Google Scholar 

  115. K. Busch et al., Phys. Rep. 444, 101 (2007)

    ADS  Google Scholar 

  116. G. Dolling, M. Wegener, S. Linden, Phys. Unserer Zeit 38, 24 (2007)

    ADS  Google Scholar 

  117. M. Hetterich et al., AIP Conf. Proc. 893, 1133 (2007)

    ADS  Google Scholar 

  118. M. Karl et al., Opt. Express 15, 8191 (2007); AIP Conf. Ser. 893, 1133 (2007)

    Google Scholar 

  119. W. Löffler et al., Appl. Phys. Lett. 90, 232105 (2007)

    ADS  Google Scholar 

  120. I.S. Nikolaev et al., Phys. Rev. B 75, 115302 (2007)

    ADS  Google Scholar 

  121. S. Reitzenstein et al., Appl. Phys. Lett. 90, 251109 (2007)

    ADS  Google Scholar 

  122. J. Renner et al., Phys. Status Solidi C 4, 3289 (2007)

    ADS  Google Scholar 

  123. C.M. Soukoulis, S. Linden, M. Wegener, Science 315, 43 (2007)

    Google Scholar 

  124. B. Deveaud (ed.), The Physics of Semiconductor Microcavities (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  125. M. Thiel et al., Appl. Phys. Lett. 91, 123515 (2007); Adv. Mater. 19, 207 (2007); ibid. 21, 4680 (2009); Opt. Lett. 35, 166 (2010)

    Google Scholar 

  126. F.M. Weber et al., Appl. Phys. Lett. 90, 161104 (2007)

    ADS  Google Scholar 

  127. M. Grochal, C. Piermarocchi, Phys. Rev. B 78, 035323 (2008)

    ADS  Google Scholar 

  128. C. Kistner et al., Opt. Express 16, 15006 (2008)

    ADS  Google Scholar 

  129. J.P. Reithmaier, Semicond. Sci. Technol. 23, 123001 (2008)

    ADS  Google Scholar 

  130. L. Schneebeli, M. Kira, S.W. Koch, Phys. Rev. Lett. 101, 097401 (2008)

    ADS  Google Scholar 

  131. T. Thomay et al., Opt. Express 16, 9791 (2008)

    ADS  Google Scholar 

  132. M. Aßmann et al., Science 325, 297 (2009)

    ADS  Google Scholar 

  133. Na Liu et al., Nat. Photon. 3, 157 (2009); Nat. Mater. 7, 31 (2008); ibid. 8, 758 (2009)

    Google Scholar 

  134. G. Oohata et al., Phys. Status Solidi C 6, 280 (2009)

    ADS  Google Scholar 

  135. K. Pradeesh, J.J. Baumbreg, G.V. Prakash, Opt. Express 17, 22171 (2009)

    ADS  Google Scholar 

  136. R. Bratschitsch, A. Leitenstorfer, Phys. Unserer Zeit 41, 191 (2010)

    ADS  Google Scholar 

  137. T. Ergin et al., Science 328, 337 (2010)

    ADS  Google Scholar 

  138. J.C. Halimeh et al., Phys. Unserer Zeit 41, 170 (2010)

    ADS  Google Scholar 

  139. C.F Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications, Springer Series in Material Science, vol. 120. (Springer, Heidelberg, 2010)

    Google Scholar 

  140. T. Kawese et al., Physica E 42, 2567 (2011)

    ADS  Google Scholar 

  141. C. Klingshirn et al., Phys. Status Solidi B 247, 1424 (2010)

    ADS  Google Scholar 

  142. U. Leonhardt et al., Phys. Unserer Zeit 41, 14 (2010)

    ADS  Google Scholar 

  143. I. Chremmos, O. Schwelb, N. Uzunoglu (Eds.), Photonic Miroresonator Research and Applications. Springer Series in Optical Sciences, vol. 156 (2010)

    Google Scholar 

  144. C.M. Soukoulis, M. Wegener, Science 330, 1633 (2010)

    ADS  Google Scholar 

  145. I. Staude et al., Opt. Lett. 35, 1094 (2010)

    Google Scholar 

  146. Advances in Metamaterials and Photonics. Appl. Phys. A 103(3), (2011)

    Google Scholar 

  147. T. Guillet et al., Appl. Phys. Lett. 98, 211105 (2011)

    ADS  Google Scholar 

  148. S. Yoshino et al., Phys. Status Solidi C, 8, 221 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klingshirn, C.F. (2012). From Cavity Polaritons to Photonic Crystals. In: Semiconductor Optics. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28362-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28362-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28361-1

  • Online ISBN: 978-3-642-28362-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics