Skip to main content

Constitutive Equations

  • Chapter
  • First Online:
  • 1215 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCONTINU))

Abstract

For an arbitrary part of the body, Eqs. (3.30) and (3.31) express the balance equations for the moment and the moment of momentum. These six scalar equations contain 18 unknown quantities that are the components of tensors \(\mathbf{ T} \) and \(\mathbf{ M} \). The dependence of \(\mathbf{ T} \) and \(\mathbf{ M} \) on medium deformations is determined by the constitutive equations or constitutive relations that depend on the material properties. They are determined experimentally. The constitutive equations must obey some principles that restrict their form, see [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Truesdell, W. Noll, The nonlinear field theories of mechanics. in Handbuch der Physik, vol. III/3, ed. by S. Flügge (Springer, Berlin, 1965), pp. 1–602

    Google Scholar 

  2. A.C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002)

    MATH  Google Scholar 

  3. C.B. Kafadar, A.C. Eringen, Micropolar media—I. The classical theory. Int. J. Eng. Sci. 9(3), 271–305 (1971)

    Article  MATH  Google Scholar 

  4. K.C. Le, H. Stumpf, Strain measures, integrability condition and frame indifference in the theory of oriented media. Int. J. Solids Struct. 35(9–10), 783–798 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Noll, A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2(1), 197–226 (1958)

    Article  MATH  Google Scholar 

  6. A.I. Murdoch, On objectivity and material symmetry for simple elastic solids. J. Elast. 60(3), 233–242 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. A.I. Murdoch, Objectivity in classical continuum physics: a rationale for discarding the ‘principle of invariance under superposed rigid body motions’ in favour of purely objective considerations. Continuum Mech. Thermodyn. 15(3), 309–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. A.I. Murdoch, On criticism of the nature of objectivity in classical continuum physics. Continuum Mech. Thermodyn. 17(2), 135–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Muschik, L. Restuccia, Changing the observer and moving materials in continuum physics: objectivity and frame-indifference. Technische Mechanik 22(2), 152–160 (2002)

    Google Scholar 

  10. R.S. Rivlin, Material symmetry revisited. GAMM Mitteilungen 25(1/2), 109–126 (2002)

    MathSciNet  MATH  Google Scholar 

  11. R.S. Rivlin, Frame indifference and relative frame indifference. Math. Mech. Solids 10(2), 145–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. R.S. Rivlin, Some thoughts on frame indifference. Math. Mech. Solids 11(2), 113–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Bertram, B. Svendsen, On material objectivity and reduced constitutive equations. Arch. Mech. 53(6), 653–675 (2001)

    MathSciNet  MATH  Google Scholar 

  14. A. Bertram, B. Svendsen, Reply to Rivlin’s material symmetry revisited or much ado about nothing. GAMM Mitteilungen 27(1), 88–93 (2004)

    MathSciNet  MATH  Google Scholar 

  15. B. Svendsen, A. Bertram, On frame-indifference and form-invariance in constitutive theory. Acta Mechanica 132(1–4), 195–207 (1999)

    Article  MathSciNet  Google Scholar 

  16. A. Bertram, Elasticity and Plasticity of Large Deformations: An Introduction, 2nd edn. (Springer, Berlin, 2008)

    MATH  Google Scholar 

  17. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. 1, 6th edn. (Addison-Wesley, Reading, 1977)

    Google Scholar 

  18. W. Pietraszkiewicz, V.A. Eremeyev, On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Pietraszkiewicz, V.A. Eremeyev, On vectorially parameterized natural strain measures of the non-linear Cosserat continuum. Int. J. Solids Struct. 46(11–12), 2477–2480 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Cosserat, F. Cosserat, Théorie des corps déformables (Herman et Fils, Paris, 1909)

    Google Scholar 

  21. T. Merlini, A variational formulation for finite elasticity with independent rotation and biot-axial fields. Comput. Mech. 19(3), 153–168 (1997)

    Article  MATH  Google Scholar 

  22. L.M. Zubov, V.A. Eremeev, Equations for a viscoelastic micropolar fluid. Doklady Phys. 41(12), 598–601 (1996)

    MathSciNet  MATH  Google Scholar 

  23. V.A. Yeremeyev, L.M. Zubov, The theory of elastic and viscoelastic micropolar liquids. J. Appl. Math. Mech. 63(5), 755–767 (1999)

    Article  MathSciNet  Google Scholar 

  24. J. Chróscielewski, J. Makowski, W. Pietraszkiewicz, Statics and dynamics of multyfolded shells. in Nonlinear Theory and Finite Elelement Method (in Polish) (Wydawnictwo IPPT PAN, Warszawa, 2004)

    Google Scholar 

  25. V.A. Eremeyev, W. Pietraszkiewicz, Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. V.A. Eremeyev, W. Pietraszkiewicz, Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012)

    Google Scholar 

  27. E. Reissner, On kinematics and statics of finite-strain force and moment stress elasticity. Stud. Appl. Math. 52, 93–101 (1973)

    Google Scholar 

  28. E. Reissner, Note on the equations of finite-strain force and moment stress elasticity. Stud. Appl. Math. 54, 1–8 (1975)

    MathSciNet  MATH  Google Scholar 

  29. R. Stojanović, Nonlinear micropolar elasticity, in Micropolar Elasticity, vol. 151, ed. by W. Nowacki, W. Olszak (Springer, Wien, 1974), pp. 73–103

    Google Scholar 

  30. L.M. Zubov, Variational principles and invariant integrals for non-linearly elastic bodies with couple stresses (in Russian). Mech. Solids (6), 10–16 (1990)

    Google Scholar 

  31. V.A. Eremeyev, L.M. Zubov, On the stability of elastic bodies with couple stresses. Mech. Solids 29(3), 172–181 (1994)

    Google Scholar 

  32. L.M. Zubov, Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies (Springer, Berlin, 1997)

    MATH  Google Scholar 

  33. E. Nikitin, L.M. Zubov, Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress. J. Elast. 51(1), 1–22 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. O.A. Bauchau, L. Trainelli, The vectorial parameterization of rotation. Nonlinear Dyn. 32(1), 71–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Dyszlewicz, Micropolar Theory of Elasticity (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  36. A.C. Eringen, Microcontinuum Field Theory I. Foundations and Solids (Springer, New York, 1999)

    Google Scholar 

  37. W. Nowacki, Theory of Asymmetric Elasticity (Pergamon-Press, Oxford, 1986)

    Google Scholar 

  38. C. Truesdell, Die Entwicklung des Drallsatzes. ZAMM 44(4/5), 149–158 (1964)

    MathSciNet  MATH  Google Scholar 

  39. C. Truesdell, A First Course in Rational Continuum Mechanics (Academic Press, New York, 1977)

    MATH  Google Scholar 

  40. C.C. Wang, C. Truesdell, Introduction to Rational Elasticity (Noordhoof Int. Publishing, Leyden, 1973)

    MATH  Google Scholar 

  41. R.S. Rivlin, Material symmetry and constitutive equations. Ingenieur-Archiv 49(5–6), 325–336 (1980)

    Article  MATH  Google Scholar 

  42. A.C. Eringen, C.B. Kafadar, Polar field theories. in Continuum Physics, vol. IV, ed. by A.C. Eringen, (Academic Press, New York 1976), pp. 1–75

    Google Scholar 

  43. A.J.M. Spencer, Isotropic integrity bases for vectors and second-order tensors. Part II. Arch. Ration. Mech. Anal. 18(1), 51–82 (1965)

    Article  MATH  Google Scholar 

  44. A.J.M. Spencer, Theory of invariants, in Continuum Physics, vol. 1, ed. by A.C. Eringen (Academic Press, New-York, 1971), pp. 239–353

    Google Scholar 

  45. Q.S. Zheng, Theory of representations for tensor functions—a unified invariant approach to constitutive equations. Appl. Mech. Rev. 47(11), 545–587 (1994)

    Article  Google Scholar 

  46. S. Ramezani, R. Naghdabadi, S. Sohrabpour, Constitutive equations for micropolar hyper-elastic materials. Int. J. Solids Struct. 46(14–15), 2765–2773 (2009)

    Article  MATH  Google Scholar 

  47. Q.S. Zheng, A.J.M. Spencer, On the canonical representations for Kronecker powers of orthogonal tensors with application to material symmetry problems. Int. J. Eng. Sci. 31(4), 617–635 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. H. Xiao, On symmetries and anisotropies of classical and micropolar linear elasticities: a new method based upon a complex vector basis and some systematic results. J. Elast. 49(2), 129–162 (1998)

    Article  MATH  Google Scholar 

  49. A.I. Lurie, Theory of Elasticity (Springer, Berlin, 2005)

    Book  Google Scholar 

  50. R.W. Ogden, Non-linear Elastic Deformations (Ellis Horwood, Chichester, 1984)

    Google Scholar 

  51. A.I. Lurie, Nonlinear Theory of Elasticity (North-Holland, Amsterdam, 1990)

    MATH  Google Scholar 

  52. A.O. Varga, Stress-Strain Behavior of Elastic Materials: Selected Problems of Large Deformations (Interscience, New York, 1996)

    Google Scholar 

  53. C. Truesdell, Rational Thermodynamics, 2nd edn. (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  54. J.K. Knowles, E. Sternberg, On the ellipticity of the equation of nonlinear elastostatics for a special material. J. Elast. 5(3–4), 341–361 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  55. J.K. Knowles, E. Sternberg, On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J. Elast. 10, 255–293 (1980)

    Article  MathSciNet  Google Scholar 

  56. P. Rosakis, Ellipticity and deformation with discontinuous gradients in finite elastostatics. Arch. Ration. Mech. Anal. 109(1), 1–37 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  57. L. Zee, E. Sternberg, Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids. Arch. Ration. Mech. Anal. 83(1), 53–90 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  58. J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications (Dunod, Paris, 1968)

    MATH  Google Scholar 

  59. G. Fichera, Existence theorems in elasticity. in Handbuch der Physik, vol. VIa/2, ed. by S. Flügge, (Springer, Berlin 1972), pp. 347–389

    Google Scholar 

  60. L. Hörmander, Linear Partial Differential Equations, A Series of Comprehensive Studies in Mathematics, vol. 116, 4th edn. (Springer, Berlin, 1976)

    Google Scholar 

  61. M. Agranovich, Elliptic boundary problems. in Partial Differential Equations IX: Elliptic Boundary Problems. Encyclopaedia of Mathematical Sciences, vol. 79, ed. by M. Agranovich, Y. Egorov, M. Shubin (Springer, Berlin, 1997), pp. 1–144

    Google Scholar 

  62. L. Nirenberg, Topics in Nonlinear Functional Analysis (American Mathematical Society, New York, 2001)

    MATH  Google Scholar 

  63. E.L. Aero, A.N. Bulygin, E.V. Kuvshinskii, Asymmetric hydromechanics. J. Appl. Math. Mech. 29(2), 333–346 (1965)

    Article  MATH  Google Scholar 

  64. A.C. Eringen, Theory of micropolar fluids. J. Math. Mech. 16(1), 1–18 (1966)

    MathSciNet  Google Scholar 

  65. N.P. Migoun, P.P. Prokhorenko, Hydrodynamics and Heattransfer in Gradient Flows of Microstructured Fluids (in Russian) (Nauka i Technika, Minsk, 1984)

    Google Scholar 

  66. G. Łukaszewicz, Micropolar Fluids: Theory and Applications (Birkhäuser, Boston, 1999)

    Book  MATH  Google Scholar 

  67. A.C. Eringen, Microcontinuum Field Theory. II. Fluent Media (Springer, New York, 2001)

    Google Scholar 

  68. A.C. Eringen, A unified continuum theory of liquid crystals. ARI Int. J. Phys. Eng. Sci. 73–84(2), 369–374 (1997)

    Google Scholar 

  69. A.C. Eringen, A unified continuum theory of electrodynamics of liquid crystals. Int. J. Eng. Sci. 35(12–13), 1137–1157 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  70. A.C. Eringen, A unified continuum theory for electrodynamics of polymeric liquid crystals. Int. J. Eng. Sci. 38(9–10), 959–987 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  71. E.A. Ivanova, A.M. Krivtsov, N.F. Morozov, A.D. Firsova, Description of crystal packing of particles with torque interaction. Mech. Solids 38(4), 76–88 (2003)

    Google Scholar 

  72. R.S. Lakes, Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22(1), 55–63 (1986)

    Article  Google Scholar 

  73. R.S. Lakes, Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua. Trans. ASME J. Eng. Mater. Technol. 113(1), 148–155 (1991)

    Article  Google Scholar 

  74. R.S. Lakes, Experimental methods for study of Cosserat elastic solids and other generalized continua. in Continuum Models for Materials with Micro-Structure, ed. by H. Mühlhaus (Wiley, New York, 1995), pp. 1–22

    Google Scholar 

  75. H.C. Park, R.S. Lakes, Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J. Biomech. 19(5), 385–397 (1986)

    Article  Google Scholar 

  76. J.F.C. Yang, R.S. Lakes, Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)

    Article  Google Scholar 

  77. R.D. Gauthier, W.E. Jahsman, Quest for micropolar elastic-constants. Trans. ASME J. Appl. Mech. 42(2), 369–374 (1975)

    Article  Google Scholar 

  78. R.D. Gauthier, W.E. Jahsman, Quest for micropolar elastic-constants. 2. Arch. Mech. 33(5), 717–737 (1981)

    MATH  Google Scholar 

  79. R. Mora, A.M. Waas, Measurement of the Cosserat constant of circular-cell polycarbonate honeycomb. Philos. Mag. A. Phys. Condens. Matter Struct. Defects Mech. Prop. 80(7), 1699–1713 (2000)

    Google Scholar 

  80. V.I. Erofeev, Wave Processes in Solids with Microstructure (World Scientific, Singapore, 2003)

    Google Scholar 

  81. P. Neff, J. Jeong, A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. ZAMM 89(2), 107–122 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  82. J. Jeong, P. Neff, Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions. Math. Mech. Solids 15(1), 78–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  83. P. Neff, J. Jeong, A. Fischle, Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mechanica 211(3–4), 237–249 (2010)

    Article  MATH  Google Scholar 

  84. D. Besdo, Towards a Cosserat-theory describing motion of an originally rectangular structure of blocks. Arch. Appl. Mech. 80(1), 25–45 (2010)

    Article  MATH  Google Scholar 

  85. D. Bigoni, W.J. Drugan, Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. Trans. ASME J. Appl. Mech. 74(4), 741–753 (2007)

    Article  MathSciNet  Google Scholar 

  86. S. Diebels, A micropolar theory of porous media: constitutive modelling. Transp. Porous Media 34(1–3), 193–208 (1999)

    Article  Google Scholar 

  87. F. Dos Reis, J.F. Ganghoffer, Construction of micropolar continua from the homogenization of repetitive planar lattices. in Mechanics of Generalized Continua, Advanced Structured Materials, vol. 7, ed. by H. Altenbach, G.A. Maugin, V. Erofeev (Springer, Berlin, 2011), pp. 193–217

    Google Scholar 

  88. W. Ehlers, E. Ramm, S. Diebels, G.D.A. d’Addetta, From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40(24), 6681–6702 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  89. S. Forest, Mechanics of generalized continua: construction by homogenizaton. J. de Physique IV France 8(PR4), Pr4-39–Pr4-48 (1998)

    Google Scholar 

  90. S. Forest, K. Sab, Cosserat overal modelling of heterogeneous materials. Mech. Res. Commun. 25(4), 449–454 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  91. S. Forest, R. Sievert, Nonlinear microstrain theories. Int. J. Solids Struct. 43(24), 7224–7245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  92. A.S.J. Suiker, A.V. Metrikine, R. de Borst, Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38(9), 1563–1583 (2001)

    Article  MATH  Google Scholar 

  93. A.S.J. Suiker, R. de Borst, Enhanced continua and discrete lattices for modelling granular assemblies. Philos. Trans. Royal Soc. A 363(1836), 2543–2580 (2005)

    Article  MATH  Google Scholar 

  94. R. Larsson, S. Diebels, A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Int. J. Numer. Methods Eng. 69(12), 2485–2512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  95. R. Larsson, Y. Zhang, Homogenization of microsystem interconnects based on micropolar theory and discontinuous kinematics. J. Mech. Phys. Solids 55(4), 819–841 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  96. E. Pasternak, H.B. Mühlhaus, Generalised homogenisation procedures for granular materials. J. Eng. Math. 52(1), 199–229 (2005)

    Article  MATH  Google Scholar 

  97. O. van der Sluis, P.H.J. Vosbeek, P.J.G. Schreurs, H.E.H. Meijer, Homogenization of heterogeneous polymers. Int. J. Solids Struct. 36(21), 3193–3214 (1999)

    Article  MATH  Google Scholar 

  98. S. Forest, K.T. Duy, Generalized continua and non-homogeneous boundary conditions in homogenisation methods. ZAMM 91(2), 90–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  99. V. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54(8), 1235–1260 (2002)

    Article  MATH  Google Scholar 

  100. P. Neff, S. Forest, A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elast. 87(2–3), 239–276 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  101. I. Cielecka, M. Wozniak, C. Wozniak, Elastodynamic behaviour of honeycomb cellular media. J. Elast. 60(1), 1–17 (2000)

    Article  MATH  Google Scholar 

  102. P. Neff, K. Chełminski, W. Müller, C. Wieners, A numerical solution method for an infinitesimal elasto-plastic Cosserat model. Math. Models Methods Appl. Sci. 17(8), 1211–1239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  103. P. Neff, K. Chełminski, Well-posedness of dynamic Cosserat plasticity. Appl. Math. Optim. 56(1), 19–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  104. M.B. Rubin, On the theory of a Cosserat point and its application to the numerical solution of continuum problems. Trans. ASME J. Appl. Mech. 52(2), 368–372 (1985)

    Article  MATH  Google Scholar 

  105. M.B. Rubin, Cosserat Theories: Shells Rods and Points (Kluwer, Dordrecht, 2000)

    MATH  Google Scholar 

  106. B. Nadler, M. Rubin, A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. Int. J. Solids Struct. 40(17), 4585–4614 (2003)

    Article  MATH  Google Scholar 

  107. M. Jabareen, M. Rubin, An improved 3-D brick Cosserat point element for irregular shaped elements. Comput. Mech. 40(6), 979–1004 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  108. M. Jabareen, M. Rubin, Modified torsion coefficients for a 3-D brick Cosserat point element. Comput. Mech. 41(4), 517–525 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  109. V.A. Eremeyev, L.M. Zubov, Principles of Viscoelastic Micropolar Fluid Mechanics (in Russian) (SSC of RASci Publishers, Rostov on Don, 2009)

    Google Scholar 

  110. R.E. Rosensweig, Magnetic fluids. Ann. Rev. Fluid Mech. 19, 437–461 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Eremeyev, V.A., Lebedev, L.P., Altenbach, H. (2013). Constitutive Equations. In: Foundations of Micropolar Mechanics. SpringerBriefs in Applied Sciences and Technology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28353-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28353-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28352-9

  • Online ISBN: 978-3-642-28353-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics