Advertisement

Link Prediction on Evolving Data Using Tensor Factorization

  • Stephan Spiegel
  • Jan Clausen
  • Sahin Albayrak
  • Jérôme Kunegis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7104)

Abstract

Within the last few years a lot of research has been done on large social and information networks. One of the principal challenges concerning complex networks is link prediction. Most link prediction algorithms are based on the underlying network structure in terms of traditional graph theory. In order to design efficient algorithms for large scale networks, researchers increasingly adapt methods from advanced matrix and tensor computations.

This paper proposes a novel approach of link prediction for complex networks by means of multi-way tensors. In addition to structural data we furthermore consider temporal evolution of a network. Our approach applies the canonical Parafac decomposition to reduce tensor dimensionality and to retrieve latent trends.

For the development and evaluation of our proposed link prediction algorithm we employed various popular datasets of online social networks like Facebook and Wikipedia. Our results show significant improvements for evolutionary networks in terms of prediction accuracy measured through mean average precision.

Keywords

Link Prediction Algorithm Temporal Network Analysis Evolving Data Multi-way Array Tensor Factorization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acar, E., Çamtepe, S.A., Yener, B.: Collective Sampling and Analysis of High Order Tensors for Chatroom Communications. In: Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.) ISI 2006. LNCS, vol. 3975, pp. 213–224. Springer, Heidelberg (2006); Ref:16CrossRefGoogle Scholar
  2. 2.
    Acar, E., Dunlavy, D.M., Kolda, T.G.: Link prediction on evolving data using matrix and tensor factorizations. In: ICDMW 2009: Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, pp. 262–269. IEEE Computer Society, Washington, DC, USA (2009); Ref:13CrossRefGoogle Scholar
  3. 3.
    Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations with missing data. In: SDM 2010: Proceedings of the 2010 SIAM International Conference on Data Mining, pp. 701–712. SIAM (2010); Ref:15Google Scholar
  4. 4.
    Acar, E., Yener, B.: Unsupervised multiway data analysis: A literature survey. IEEE Trans. on Knowl. and Data Eng. 21(1), 6–20 (2009); Ref:11CrossRefGoogle Scholar
  5. 5.
    Bader, B.W., Harshman, R.A., Kolda, T.G.: Temporal analysis of social networks using three-way dedicom. Sandia Report (June 2006); Ref:12Google Scholar
  6. 6.
    Cao, L.: In-depth behavior understanding and use: the behavior informatics approach. Information Science 180, 3067–3085 (2010)CrossRefGoogle Scholar
  7. 7.
    Dumais, S.T., Furnas, G.W., Landauer, T.K., Deerwester, S., Harshman, R.: Using latent semantic analysis to improve access to textual information. In: CHI 1988: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 281–285. ACM, New York (1988)Google Scholar
  8. 8.
    Georgii, E., Tsuda, K., Schölkopf, B.: Multi-way set enumeration in real-valued tensors. In: DMMT 2009: Proceedings of the 2nd Workshop on Data Mining using Matrices and Tensors, pp. 1–10. ACM, New York (2009); Ref:02Google Scholar
  9. 9.
    Janson, S., Knuth, D.E., Luczak, T., Pittel, B.: The birth of the giant component. Random Struct. Algorithms 4(3), 233–359 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review (June 2008); Ref:14Google Scholar
  11. 11.
    Kunegis, J., Fay, D., Bauckhage, C.: Network growth and the spectral evolution model. In: Proc. Int. Conf. on Information and Knowledge Management (2010)Google Scholar
  12. 12.
    Leskovec, J.: Networks, communities and kronecker products. In: CNIKM 2009: Proceeding of the 1st ACM International Workshop on Complex Networks Meet Information & Knowledge Management, pp. 1–2. ACM, New York (2009); Ref:04Google Scholar
  13. 13.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: WWW 2010: Proceedings of the 19th International Conference on World Wide Web, pp. 641–650. ACM, New York (2010)Google Scholar
  14. 14.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: CHI 2010: Conference on Human Factors in Computing Systems (2010)Google Scholar
  15. 15.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD 2005: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM, New York (2005); Ref:07Google Scholar
  16. 16.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community structure in large social and information networks. In: WWW 2008: Proceeding of the 17th International Conference on World Wide Web, pp. 695–704. ACM, New York (2008)Google Scholar
  17. 17.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: CIKM 2003: Proceedings of the Twelfth International Conference on Information and Knowledge Management, pp. 556–559. ACM, New York (2003)Google Scholar
  18. 18.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: CIKM 2003: Proceedings of the Twelfth International Conference on Information and Knowledge Management, pp. 556–559. ACM, New York (2003)Google Scholar
  19. 19.
    Ma, N., Lim, E.-P., Nguyen, V.-A., Sun, A., Liu, H.: Trust relationship prediction using online product review data. In: CNIKM 2009: Proceeding of the 1st ACM International Workshop on Complex Networks Meet Information & Knowledge Management, pp. 47–54. ACM, New York (2009)CrossRefGoogle Scholar
  20. 20.
    Spiegel, S., Kunegis, J., Li, F.: Hydra: a hybrid recommender system [cross-linked rating and content information]. In: CNIKM 2009: Proceeding of the 1st ACM International Workshop on Complex Networks Meet Information & Knowledge Management, pp. 75–80. ACM, New York (2009)CrossRefGoogle Scholar
  21. 21.
    Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: KDD 2006: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 374–383. ACM, New York (2006); Ref:09Google Scholar
  23. 23.
    Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based on tensor dimensionality reduction. In: RecSys 2008: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 43–50. ACM, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stephan Spiegel
    • 1
  • Jan Clausen
    • 1
  • Sahin Albayrak
    • 1
  • Jérôme Kunegis
    • 2
  1. 1.DAI-LaborTechnical University BerlinBerlinGermany
  2. 2.University of Koblenz-LandauKoblenzGermany

Personalised recommendations