Advertisement

Constructing Personal Knowledge Base: Automatic Key-Phrase Extraction from Multiple-Domain Web Pages

  • Yin-Fu Huang
  • Cin-Siang Ciou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7104)

Abstract

In the paper, we proposed a general framework that could automatically extract key-phrases from a collection of web pages concerning a specific topic with the help of The Free Dictionary and then construct a personal knowledge base. Both the base and visual feature in a web page are used to calculate the weight of each candidate phrase. The system extracts top p% key-phrases for each web page based on these two features and then generates a term set using union operators. Next, the system builds the relationships between terms in the term set by referencing The Free Dictionary, and then generates a list of terms sorted by weights. With the top q terms specified by users, a semantic graph can be constructed to present the part of a personal knowledge base, which shows the relationships between terms from the same domain. Finally, the experimental results show that the key-phrases generated by the proposed extractor are with good quality and acceptable for humans.

Keywords

key-phrase extraction semantic graph learning mechanism term correlation POS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D’Avanzo, E., Magnini, B.: A Keyphrase-based Approach to Summarization: the LAKE System at DUC-2005. In: Document Understanding Workshop (2005)Google Scholar
  2. 2.
    El-Beltagy, S.R., Rafea, A.: KP-Miner: a Keyphrase Extraction System for English and Arabic Documents. Information Systems 34(1), 132–144 (2009)CrossRefGoogle Scholar
  3. 3.
    HaCohen-Kerner, Y.: Automatic Extraction of Keywords from Abstracts. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2773, pp. 843–849. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    HaCohen-Kerner, Y., Gross, Z., Masa, A.: Automatic Extraction and Learning of Keyphrases from Scientific Articles. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 657–669. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Kumar, N., Srinathan, K.: Automatic Keyphrase Extraction from Scientific Documents Using N-gram Filtration Technique. In: 8th ACM Symposium on Document Engineering, pp. 199–208 (2008)Google Scholar
  6. 6.
    Turney, P.D.: Learning Algorithms for Keyphrase Extraction. Information Retrieval 2(4), 303–336 (2000)CrossRefGoogle Scholar
  7. 7.
    Turney, P.D.: Coherent Keyphrase Extraction via Web Mining. In: 20th International Joint Conference on Artificial Intelligence, pp. 434–439 (2003)Google Scholar
  8. 8.
    Witten, I.H., Paynter, G.W., Frank, E., et al.: KEA: Practical Automatic Keyphrase Extraction. In: 4th ACM Conference on Digital Libraries, pp. 254–255 (1999)Google Scholar
  9. 9.
    Zhang, K., Xu, H., Tang, J., Li, J.: eyword Extraction Using Support Vector Machine. In: Yu, J.X., Kitsuregawa, M., Leong, H.-V. (eds.) WAIM 2006. LNCS, vol. 4016, pp. 85–96. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Schmid, H.: Probabilistic Part-of-speech Tagging Using Decision Trees. In: International Conference on New Methods in Language Processing, pp. 44–49 (1994)Google Scholar
  11. 11.
    The Free Dictionary, http://www.thefreedictionary.com/
  12. 12.
    Cao, L.: In-depth Behavior Understanding and Use: the Behavior Informatics Approach. Information Science 180(17), 3067–3085 (2010)CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., Milios, E., Zincir-Heywood, N.: Narrative Text Classification for Automatic Key Phrase Extraction in Web Document Corpora. In: 7th Annual ACM International Workshop on Web Information and Data Management, pp. 51–58 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yin-Fu Huang
    • 1
  • Cin-Siang Ciou
    • 1
  1. 1.National Yunlin University of Science and TechnologyYunlinTaiwan

Personalised recommendations