Advertisement

Robust Learning of Mixture Models and Its Application on Trial Pruning for EEG Signal Analysis

  • Boyu Wang
  • Feng Wan
  • Peng Un Mak
  • Pui In Mak
  • Mang I Vai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7104)

Abstract

This paper presents a novel method based on deterministic annealing to circumvent the problem of the sensitivity to atypical observations associated with the maximum likelihood (ML) estimator via conventional EM algorithm for mixture models. In order to learn the mixture models in a robust way, the parameters of mixture model are estimated by trimmed likelihood estimator (TLE), and the learning process is controlled by temperature based on the principle of maximum entropy. Moreover, we apply the proposed method to the single-trial electroencephalography (EEG) classification task. The motivation of this work is to eliminate the negative effects of artifacts in EEG data, which usually exist in real-life environments, and the experimental results demonstrate that the proposed method can successfully detect the outliers and therefore achieve more reliable result.

Keywords

Deterministic annealing mixture models robust learning trial pruning EEG signals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolpaw, J.R., et al.: Brain–computer interface technology: a review of the first international meeting. IEEE Transactions on Rehabilitation Engineering 8(2), 164–173 (2000)CrossRefGoogle Scholar
  2. 2.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interface for communication and control. Clinical Neurophysiology 133(6), 767–791 (2002)CrossRefGoogle Scholar
  3. 3.
    Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. Journal of Neural Engineering 4(2), R32–R57 (2007)CrossRefGoogle Scholar
  4. 4.
    McFarland, D.J., Anderson, C.W., Müller, K.-R., Schlogl, A., Krusienski, D.J.: BCI meeting 2005-workshop on BCI signal processing: feature extraction and translation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(2), 135–138 (2006)CrossRefGoogle Scholar
  5. 5.
    Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering 4(2), R1–R13 (2007)CrossRefGoogle Scholar
  6. 6.
    McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Millán, J.R., Renkens, F., Mouriño, J., Gerstner, W.: Brain-actuated interaction. Artificial Intelligence 159, 241–259 (2004)CrossRefGoogle Scholar
  8. 8.
    Millán, J.R.: On the need for on-line learning in brain–computer interfaces. In: Proceedings of International Joint Conference on Neural Networks, Budapest, Hungary, pp. 2877–2882 (2004)Google Scholar
  9. 9.
    Buttfield, A., Millán, J.R.: Online classifier adaptation in brain-computer interfaces. Techical Report, IDIAP–RR 06-16 (2006)Google Scholar
  10. 10.
    Sun, S., Zhang, C., Lu, N.: On the On-line Learning Algorithms for EEG Signal Classification in Brain Computer Interfaces. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3614, pp. 638–647. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Sun, S., Zhang, C.: Learning On-line Classification via Decorrelated LMS Algorithm: Application to Brain–Computer Interfaces. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005. LNCS (LNAI), vol. 3735, pp. 215–226. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Schalk, G., Brunner, P., Gerhardt, L.A., Bischof, H., Wolpaw, J.R.: Brain-computer interfaces (BCIs): Detection instead of classification. Neuroscience Methods 167(1), 51–62 (2008)CrossRefGoogle Scholar
  13. 13.
    Fazli, S., Danóczy, M., Popescu, F., Blankertz, B., Müller, K.-R.: Using Rest Class and Control Paradigms for Brain Computer Interfacing. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 651–665. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. Wiley, New York (1997)zbMATHGoogle Scholar
  15. 15.
    Nguyen, D.T., Chen, L., Chan, C.K.: An outlier-aware data clustering algorithm in mixture model. In: Proceedings of 7th IEEE International Conference on Information, Communication and Signal Processing, Macau, China, pp. 1–5 (2009)Google Scholar
  16. 16.
    Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.-R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine 25(1), 41–56 (2008)CrossRefGoogle Scholar
  17. 17.
    Hadi, A.S., Luceño, A.: Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms. Computational Statistics & Data Analysis 25(3), 251–272 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Neykov, N., Filzmoser, P., Dimova, R., Neytchev, P.: Robust fitting of mixtures using trimmed likelihood estimator. Computational Statistics & Data Analysis 52(1), 299–308 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Neykov, N., Müller, C.: Breakdown point and computation of trimmed likelihood estimators in generalized linear models. In: Developments in Robust Statistics, pp. 277–286. Physica-Verlag, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Rose, K., Gurewitz, E., Fox, G.C.: Statistical mechanics and phase transitions in clustering. Physical Review Letters 65(8), 945–948 (1990)CrossRefGoogle Scholar
  21. 21.
    Rose, K.: Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE 86(11), 2210–2239 (1998)CrossRefGoogle Scholar
  22. 22.
    Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21, http://cvxr.com/cvx
  23. 23.
    Rose, K., Gurewitz, E., Fox, G.C.: Constrained clustering as an optimization method. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(8), 785–794 (1993)CrossRefGoogle Scholar
  24. 24.
    Machine Learning Repository website, http://archive.ics.uci.edu/ml/index.html
  25. 25.
    BCI competition IV website, http://bbci.de/competition/iv/
  26. 26.
    Ueda, N., Nakano, R.: Deterministic annealing EM algorithm. Neural Networks 11(2), 271–282 (1998)CrossRefGoogle Scholar
  27. 27.
    Zhao, Q., Miller, D.J.: A deterministic, annealing-based approach for learning and model selection in finite mixture models. In: Proceedings of 29th IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, pp. V-457–V-460 (2004)Google Scholar
  28. 28.
    Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3), 381–396 (2002)CrossRefGoogle Scholar
  29. 29.
    Zhang, B., Zhang, C., Yi, X.: Competitive EM algorithm for finite mixture models. Pattern Recognition 37(1), 131–144 (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Boyu Wang
    • 1
  • Feng Wan
    • 1
  • Peng Un Mak
    • 1
  • Pui In Mak
    • 1
  • Mang I Vai
    • 1
  1. 1.Department of Electrical and Electronics Engineering, Faculty of Science and TechnologyUniversity of MacauChina

Personalised recommendations