Advertisement

The Instance Easiness of Supervised Learning for Cluster Validity

  • Vladimir Estivill-Castro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7104)

Abstract

“The statistical problem of testing cluster validity is essentially unsolved” [5]. We translate the issue of gaining credibility on the output of un-supervised learning algorithms to the supervised learning case. We introduce a notion of instance easiness to supervised learning and link the validity of a clustering to how its output constitutes an easy instance for supervised learning. Our notion of instance easiness for supervised learning extends the notion of stability to perturbations (used earlier for measuring clusterability in the un-supervised setting). We follow the axiomatic and generic formulations for cluster-quality measures. As a result, we inform the trust we can place in a clustering result using standard validity methods for supervised learning, like cross validation.

Keywords

Cluster validity Supervized Learning Instance easiness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackerman, M., Ben-David, S.: Measures of clustering quality: A working set of axioms for clustering. In: Advances in Neural Information Processing Systems 22 NIPS, Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, pp. 121–128. MIT Press, Vancouver (2008)Google Scholar
  2. 2.
    Ackerman, M., Ben-David, S.: Clusterability: A theoretical study. In: Proceedings of the Twelfth Int. Conf. on Artificial Intelligence and Statistics AISTATS, Clearwater Beach, Florida, USA, vol. 5, JMLR:W&CP (2009)Google Scholar
  3. 3.
    Bae, E., Bailey, J.: Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity. In: Proceedings of the 6th IEEE Int. Conf. on Data Mining (ICDM), pp. 53–62. IEEE Computer Soc. (2006)Google Scholar
  4. 4.
    Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., Scuse, D.: WEKA Manual for Version 3-6-2. The University of Waikato (2010)Google Scholar
  5. 5.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, NY (2001)zbMATHGoogle Scholar
  6. 6.
    Estivill-Castro, V., Yang, J.: Cluster Validity using Support Vector Machines. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 244–256. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Halkidi, M., Vazirgiannis, M.: Chapter 30 — quality assessment approaches in data mining. In: The Data Mining and Knowledge Discovery Handbook, pp. 661–696. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)CrossRefGoogle Scholar
  9. 9.
    Kleinberg, J.: An impossibility theorem for clustering. In: The 16th conference on Neural Information Processing Systems (NIPS), pp. 446–453. MIT Press (2002)Google Scholar
  10. 10.
    Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning 52(1-2), 91–118 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Rokach, L., Maimon, O.: Chapter 15 — clustering methods. In: The Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. on Machine Learning Research 3, 583–617 (2002)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Witten, I., Frank, E.: Data Mining — Practical Machine Learning Tools and Technologies with JAVA implementations (2000)Google Scholar
  14. 14.
    Wu, X., et al.: Top 10 algorithms in data mining. Knowledge and Information Systems 14(1), 1–37 (2008)CrossRefGoogle Scholar
  15. 15.
    Yang, J., Lee, I.: Cluster validity through graph-based boundary analysis. In: Int. Conf. on Information and Knowledge Engineering, IKE, pp. 204–210. CSREA Press (2004)Google Scholar
  16. 16.
    Yu, Z., Wong, H.-S., Wang, H.: Graph-based consensus clustering for class discovery from gene expression data. Bioinformatics 23(21), 288–2896 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vladimir Estivill-Castro
    • 1
  1. 1.Griffith UniversityAustralia

Personalised recommendations