Efficient Mining Top-k Regular-Frequent Itemset Using Compressed Tidsets

  • Komate Amphawan
  • Philippe Lenca
  • Athasit Surarerks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7104)


Association rule discovery based on support-confidence framework is an important task in data mining. However, the occurrence frequency (support) of a pattern (itemset) may not be a sufficient criterion for discovering interesting patterns. Temporal regularity, which can be a trace of behavior, with frequency behavior can be revealed as an important key in several applications. A pattern can be regarded as a regular pattern if it occurs regularly in a user-given period. In this paper, we consider the problem of mining top-k regular-frequent itemsets from transactional databases without support threshold. A new concise representation, called compressed transaction-ids set (compressed tidset), and a single pass algorithm, called TR-CT (Top-k Regular frequent itemset mining based on Compressed Tidsets), are proposed to maintain occurrence information of patterns and discover k regular itemsets with highest supports, respectively. Experimental results show that the use of the compressed tidset representation achieves highly efficiency in terms of execution time and memory consumption, especially on dense datasets.


Association Rule Frequent Itemsets Mining Association Rule Memory Consumption Support Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cao, L.: In-depth behavior understanding and use: The behavior informatics approach. Inf. Sci. 180(17), 3067–3085 (2010)CrossRefGoogle Scholar
  2. 2.
    Shyu, M.L., Haruechaiyasak, C., Chen, S.C., Zhao, N.: Collaborative filtering by mining association rules from user access sequences. In: Int. Workshop on Challenges in Web Information Retrieval and Integration, pp. 128–135. IEEE Computer Society (2005)Google Scholar
  3. 3.
    Zhou, B., Hui, S.C., Chang, K.: Enhancing mobile web access using intelligent recommendations. IEEE Intelligent Systems 21(1), 28–34 (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, M.C., Chiu, A.L., Chang, H.H.: Mining changes in customer behavior in retail marketing. Expert Syst. Appl. 28(4), 773–781 (2005)CrossRefGoogle Scholar
  5. 5.
    Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y.K.: Discovering Periodic-Frequent Patterns in Transactional Databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 242–253. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499 (1994)Google Scholar
  7. 7.
    Tanbeer, S.K., Ahmed, C.F., Jeong, B.S.: Mining regular patterns in incremental transactional databases. In: Int. Asia-Pacific Web Conference, pp. 375–377. IEEE Computer Society (2010)Google Scholar
  8. 8.
    Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S.: Mining Regular Patterns in Data Streams. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 399–413. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Uday Kiran, R., Krishna Reddy, P.: Towards Efficient Mining of Periodic-Frequent Patterns in Transactional Databases. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010. LNCS, vol. 6262, pp. 194–208. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Han, J., Wang, J., Lu, Y., Tzvetkov, P.: Mining top-k frequent closed patterns without minimum support. In: IEEE ICDM, pp. 211–218 (2002)Google Scholar
  11. 11.
    Amphawan, K., Lenca, P., Surarerks, A.: Mining Top-K Periodic-Frequent Patterns without Support Threshold. In: Papasratorn, B., Chutimaskul, W., Porkaew, K., Vanijja, V. (eds.) IAIT 2009. CCIS, vol. 55, pp. 18–29. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: ACM SIGKDD KDD International Conference, pp. 326–335 (2003)Google Scholar
  13. 13.
    Shenoy, P., Haritsa, J.R., Sudarshan, S., Bhalotia, G., Bawa, M., Shah, D.: Turbo-charging vertical mining of large databases. SIGMOD Rec. 29(2), 22–33 (2000)CrossRefGoogle Scholar
  14. 14.
    Asuncion, A., Newman, D.: UCI machine learning repository (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Komate Amphawan
    • 1
    • 2
    • 3
  • Philippe Lenca
    • 2
    • 3
  • Athasit Surarerks
    • 1
  1. 1.ELITE LaboratoryChulalongkorn UniversityBangkokThailand
  2. 2.Institut Telecom, Telecom BretagneUMR CNRS 3192 Lab-STICCFrance
  3. 3.Université européenne de BretagneFrance

Personalised recommendations