Evaluating the Regularity of Human Behavior from Mobile Phone Usage Logs

  • Hyoungnyoun Kim
  • Ji-Hyung Park
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7104)


This paper investigated the relationship between incrementally logged phone logs and self-reported survey data to derive regularity and predictability from mobile phone usage logs. First, we extracted information not from a single value such as location or call logs, but from multivariate contextual logs. Then we considered the changing pattern of the incrementally logged information over time. To evaluate the patterns of human behavior, we applied entropy changes and the duplicated instances ratios from the stream of mobile phone usage logs. By applying the Hidden Markov Models to the patterns, the accumulated log patterns were classified according to the self-reported survey data. This research confirmed that regularity and predictability of human behavior can be evaluated by mobile phone usages.


Regularity predictability human behavior mobile phone log reality mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Song, C., Qu, Z., Blumm, N., Barabasi, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barabasi, A.L.: Bursts, the hidden pattern behind everything we do. Dutton, New York (2010)Google Scholar
  3. 3.
    Massachusetts Institute of Technology, Reality Mining Project,
  4. 4.
    Kwok, R.: Personal technology: Phoning in data. Nature 458(7241), 959–961 (2009)CrossRefGoogle Scholar
  5. 5.
    Song, C., Qu, Z., Blumm, N., Barabasi, A.L.: Limits of predictability in human mobility - supplementary material (2010)Google Scholar
  6. 6.
    Eagle, N., Pentland, A., Lazer, D.: Inferring social network structure using mobile phone data. In: Proceedings of the National Academy of Sciences, pp. 15274–15278 (2009)Google Scholar
  7. 7.
    Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal and Ubiquitous Computing 10(4), 255–268 (2006)CrossRefGoogle Scholar
  8. 8.
    Cao, L.: In-depth Behavior Understanding and Use: the Behavior Informatics Approach. Information Science 180(17), 3067–3085 (2010)CrossRefGoogle Scholar
  9. 9.
    Phithakkitnukoon, S., Dantu, R.: Adequacy of data for characterizing caller behavior. In: Proceedings of KDD Inter. Workshop on Social Network Mining and Analysis (2008)Google Scholar
  10. 10.
    Phithakkitnukoon, S., Horanont, T., Di Lorenzo, G., Shibasaki, R., Ratti, C.: Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 14–25. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Jensen, B.S., Larsen, J., Hansen, L.K., Larsen, J.E., Jensen, K.: Predictability of Mobile Phone Associations. In: Inter. Workshop on Mining Ubiquitous and Social Environments (2010)Google Scholar
  12. 12.
    Chi, J., Jo, H., Ryu, J.H.: Predicting Interpersonal Relationship based on Mobile Communication Patterns. In: The ACM Conf. on Computer Supported Cooperative Work (2010)Google Scholar
  13. 13.
    Kim, H., Kim, I.J., Kim, H.G., Park, J.H.: Adaptive Modeling of a User’s Daily Life with a Wearable Sensor Network. In: Tenth IEEE International Symposium on Multimedia, pp. 527–532 (2008)Google Scholar
  14. 14.
    MacKay, D.J.C.: Information theory, inference, and learning algorithms. Cambridge Univ. Press, Cambridge (2003)zbMATHGoogle Scholar
  15. 15.
    Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10(7), 1895–1923 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hyoungnyoun Kim
    • 1
    • 2
  • Ji-Hyung Park
    • 1
    • 2
  1. 1.Department of HCI and RoboticsUniversity of Science and TechnologyKorea
  2. 2.Interaction and Robotics Research CenterKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations