Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 144))

Abstract

This paper describes a microrobotic gripper made from an ionic polymer metal composite (IPMC) material. The grasping capabilities of this device are described theoretically, predicting a 1.22 mN force when grasping a rigid object. Experimental results of this grasping are shown, corroborating the expected force with a measurement of 1.2 mN. In addition, a small modification to the finger, i.e., cutting one of the finger surfaces into two separate pieces allows the device to function as both a sensor and actuator. The microfinger’s sensing capability is described through its application as a force sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashkin, A.: Optical trapping and manipulation of neutral particles using lasers. Proceedings of National Academy of Sciences 94, 4853–4860 (1997)

    Article  Google Scholar 

  2. Masuda, S., Washizu, M., Kawabata, I.: Movement of blood cells in liquid by non-uniform travelling field. IEEE Transactions on Industrial Applications 24, 217–222 (1988)

    Article  Google Scholar 

  3. Lee, G.B., Fu, L.M.: Platform Technology for manipulation of Cells, Protiens and DNA. In: Proceedings of International Conference on Robotics and Automation, Taipei, Taiwan, September 14-19, pp. 3636–3641 (2003)

    Google Scholar 

  4. Kumar, R., Kapoor, A.A., Taylor, R.H.: Preliminary experiments in robot/human cooperative microinjection. In: Proceedings of International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, October 27-31, pp. 3186–3191 (2003)

    Google Scholar 

  5. Zhang, H., Bellouard, Y., Sidler, T., Burdet, E., Poo, A.N., Clavel, R.: A monolithic Shape Memory Alloy Microgripper for 3-D Assembly of Tissue Engineering Scafolds. In: Brugeuteds, J.-M., Nelson, B.J. (eds.) Proceedings of SPIE-Microrobotics and Microassembly III, Boston, MA, October 29-30, vol. 4568, pp. 50–60 (2001)

    Google Scholar 

  6. Goldfarb, M., Celanovic, N.: A flexure-based gripper for small scale manipulation. Robotica 17(2), 181–188 (1999)

    Article  Google Scholar 

  7. Sun, Y., Piyabongkarn, D., Sezen, A., Nelson, B.J., Rajamani, R., Schoch, R., Potasek, D.P.: A Novel Dual-Axis Electrostatic Micro-Actuation System for Micromanipulation. In: Proceedings of International Conference on Intelligent Robots and Systems, EPFL, Switzerland, October 2-4, pp. 1796–1801 (2002)

    Google Scholar 

  8. Menciassi, A., Hannaford, B., Carrozza, M.C.: 4-Axis Electromagnetic Microgripper. In: Proceedings of International Conference on Robotics and Automation, Detroit, Michigan, May 10-15, pp. 2899–2904 (1999)

    Google Scholar 

  9. Kim, S.M., Kim, K., Shim, J.H., Kim, B., Kim, D.H., Chung, C.C.: Position and force control of a sensorized microgripper. In: Proceedings of International Conference on Control, Automation and System, Muju Resort, Jeonbuk, Korea, October 16-19, pp. 319–322 (2002)

    Google Scholar 

  10. Zesch, W., Brunner, M., Weber, A.: Vacuum Tool for Handling Microobjects with a Nanorobot. In: Proceedings of International Conference on Robotics and Automation, Detroit, Michigan, May 10-15, pp. 2899–2904 (1999)

    Google Scholar 

  11. Arai, F., Fukuda, T.: Adhesion-type Micro endeffector for Micromanipulation. In: Proceedings of the International Conference on Robotics and Automation, Albuquerque, NM, pp. 1472–1477 (April 1997)

    Google Scholar 

  12. Shen, Y., Xi, N., Li, W.J.: Force-Guided Assembly of Micro Mirrors. In: Proceedings of International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, October 27-31, pp. 2149–2154 (2003)

    Google Scholar 

  13. Keller, C.G.: Microgrippers with Integrated Actuator and Force sensors. In: Proceedings of the International Symposium on Robotics and Automation, World Automation Conference, Anchorage, AK (May 1998)

    Google Scholar 

  14. Carrozza, M.C., Dario, P., Menciassi, A., Fenu, A.: Manipulating Biological and Mechanical Micro-objects with a LIGA-Microfabricated End Effector. In: Proceedings of the International Conference on Robotics and Automation, Leuven, Belgium, May 16-20, pp. 1811–1816 (1998)

    Google Scholar 

  15. Deole, U., Lumia, R., Shahinpoor, M.: Grasping flexible objects using artificial muscle microgrippers. In: World Automation Congress: International Symposium on Manufacturing and Applications (ISOMA), Seville, Spain, June 28-July 2 (2004)

    Google Scholar 

  16. Grodzinsky, A.J.: Electromechanics of Deformable Polyelectrolyte Membranes, in Dept. of Elec. Eng. vol. Sc.D. Dissertation: MIT (1974)

    Google Scholar 

  17. Yannis, I.V., Grodzinsky, A.J.: Electromechanical Energy Conversion with Collagen Fibers in an Aqueous Medium. Journal of Mechanochemical Cell Motility 2, 113–125 (1973)

    Google Scholar 

  18. Shahinpoor, M.: Continuum Electromechanics of Ionic Polymeric Gels as Artificial Muscles for Robotic Applications. Int. Journal of Smart Material and Structures 3, 367–372 (1994)

    Article  Google Scholar 

  19. Osada, Y., Hasebe, M.: Electrically Activated Mechanochemical Devices Using Polyelectrolyte Gels. Chemistry Letters, 1285–1288 (1985)

    Google Scholar 

  20. Brock, D., Lee, W., Segalman, D., Witkowski, W.: A Dynamic Model of a Linear Actuator Based on Polymer Hydrogel. In: International Conference on Intelligent Materials, pp. 210–222 (1994)

    Google Scholar 

  21. Bar-Cohen, Y., Xue, T., Joffe, B., Lih, S.-S., Shahinpoor, M., Simpson, J., Smith, J., Willis, P.: Electroactive polymers (IPMC) low mass muscle actuators. In: SPIE Conference on Smart Materials and Structures, San Diego, California (1997)

    Google Scholar 

  22. Kim, S.J., Lee, I.T., Lee, H.Y., Kim, Y.H.: Performance improvement of an ionic polymer-metal composite actuator by parylene thin film coating. Smart Materials and Structures 15, 1540–1546 (2006)

    Article  Google Scholar 

  23. Lumia, R., Shahinpoor, M.: Design of a Microgripper Using Artificial Muscles. In: World Automation Conference, Anchorage, AK (1998)

    Google Scholar 

  24. Lumia, R., Shahinpoor, M.: Microgripper design using electro-active polymers. In: Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices, Newport Beach, CA, USA. SPIE-Int. Soc. Opt. Eng, vol. 3669, pp. 322–329 (1999)

    Google Scholar 

  25. Sadeghipour, K., Salomon, R., Neogi, S.: Development of a novel electrochemically active membrane and ‘smart’ material based vibration sensor/damper. Smart Materials and Structures 1, 172–179 (1992)

    Article  Google Scholar 

  26. Shahinpoor, M.: A New Effect in Ionic Polymeric Gels: The Ionic Flexogelectric Effect. In: North American Conference on Smart Structures and Materials, San Diego, California, vol. 2441 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Lumia, R. (2012). A Microrobotic Gripper and Force Sensor. In: Gaol, F., Nguyen, Q. (eds) Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science. Advances in Intelligent and Soft Computing, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28314-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28314-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28313-0

  • Online ISBN: 978-3-642-28314-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics