Skip to main content

Applicability of Asymptotic Tracking in Case of Type 1 Diabetes

  • Chapter
  • 630 Accesses

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 1))

Abstract

The alarming increasing tendency of diabetes population attracts technological interest too. From an engineering point of view, the treatment of diabetes mellitus can be represented by an outer control loop, to replace the partially or totally deficient blood glucose control system of the human body. To acquire this “artificial pancreas” a reliable glucose sensor and an insulin pump is needed as hardware, and a control algorithm to ensure the proper blood glucose regulation is needed as software. The latter is a key point of the diabetes “closing the loop” problem and its primary prerequisite is a valid model able to describe the blood glucose system. In the current chapter one of the most widely used and complex nonlinear model will be investigated with a dual purpose. Specific control aspects are discussed in the literature only on linearized versions; however, differential geometric approaches give more general formalization. As a result our first aim is to hide the nonlinearity of the physiological model by transforming the control input provided by a linear controller so that the response of the model would mimic the behavior of a linear system. Hence, the validity of linear controllers can be extended from the neighborhood of a working point to a larger subset of the state-space bounded by specific constraints. On the other hand, applicability of the nonlinear methodology is tested on a simple PID control based algorithm compared with LQG optimal method. Simulations are done under MATLAB on realistic input scenarios. Since the values of the state variables are needed Kalman filtering is used for state estimation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wild, S., Roglic, G., Green, A., Sicree, R., King, H.: Global prevalence of diabetes - Estimates for the year 2000 and projections for 2030. Diab Care 27(5), 1047–1053 (2004)

    Google Scholar 

  2. Shaw, J.E., Sicree, R.A., Zimmet, P.Z.: Global estimates of the prevalence of diabetes for 2010 and 2030. Diab. Res. Clin. Pract. 87, 4–14 (2010)

    Article  Google Scholar 

  3. Fonyó, A., Ligeti, E.: Physiology. Medicina, Budapest (2008) (in Hungarian)

    Google Scholar 

  4. Cobelli, C., Dalla Man, C., Sparacino, G., Magni, L., Nicolao, G., Kovatchev, B.: Diabetes: Models, Signals, and Control (Methodological Review). IEEE Rev. Biomed. Eng. 2, 54–96 (2009)

    Article  Google Scholar 

  5. Harvey, R., Wang, Y., Grossman, B., Percival, M., Bevier, W., Finan, D., Zisser, H., Seborg, D., Jovanovic, L., Doyle, J.F., Dassau, E.: Quest for the artificial pancreas. IEEE Eng. Med. Biol. Mag. 29(2), 53–62 (2010)

    Google Scholar 

  6. Chee, F., Tyrone, F.: Closed-loop control of blood glucose. LNCS, vol. 368. Springer, Heidelberg (2007)

    Google Scholar 

  7. Bergman, B.N., Ider, Y.Z., Bowden, C.R., Cobelli, C.: Quantitative estimation of insulin sensitivity. Am. J. Physiol. 236, 667–677 (1979)

    Google Scholar 

  8. Dalla Man, C., Rizza, R., Cobelli, C.: Meal simulation model of the glucose-insulin system. IEEE Trans. Biomed. Eng. 54(10), 1740–1749 (2007)

    Article  Google Scholar 

  9. Magni, L., Raimondo, D.M., Dalla Man, C., Nicolao, G., Kovatchev, B., Cobelli, C.: Model predictive control of glucose concentration in type I diabetic patients: An in silico trial. Biomed. Signal Process Control 4(4), 338–346 (2009)

    Article  Google Scholar 

  10. Hovorka, R., Canonico, V., Chassin, L.J., Haueter, U., Massi-Benedetti, M., Federici, M.O., Pieber, T.R., Schaller, H.C., Schaupp, L., Vering, T., Wilinska, M.E.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25, 905–920 (2004)

    Article  Google Scholar 

  11. Parker, R.S., Doyle III, F.J., Ward, J.H., Peppas, N.A.: Robust H ∞  glucose control in diabetes using a physiological model. AIChE J. 46(12), 2537–2549 (2000)

    Article  Google Scholar 

  12. Sorensen, J.T.: A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. PhD Thesis, Dept. of Chemical Engineering Massachusetts Institute of Technology, USA (1985)

    Google Scholar 

  13. Palumbo, P., Pepe, P., Panunzi, S., Gaetano, A.: Glucose control by subcutaneous insulin administration: a DDE modeling approach. In: Proc. 18th IFAC World Congress, Milano, Italy, pp. 1471–1476 (2011)

    Google Scholar 

  14. Kovács, L., Szalay, P., Benyó, B., Chase, G.J.: Asymptotic output tracking in blood glucose control. A case study. In: 50th IEEE CDC & ECC Conf., Orlando, USA (2011) (in press)

    Google Scholar 

  15. Szalay, P., Kovács, L.: Applicability of asymptotic tracking in case of Type 1 Diabetes. In: Proc. 6th. IEEE Int. Symp. Appl. Comput. Intell. and Inform., Timisoara, Romania, pp. 623–628 (2011)

    Google Scholar 

  16. Isidori, A.: Nonlinear control systems, 3rd edn. Springer, Berlin (1995)

    MATH  Google Scholar 

  17. Lantos, B.: Theory and design of control systems II. Akademia Press, Budapest (2003) (in Hungarian)

    Google Scholar 

  18. Facchinetti, A., Sparacino, G., Cobelli, C.: An online self-tunable method to denoise CGM sensor data. IEEE Trans. Biomed. Eng. 57(3), 634–641 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Szalay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Szalay, P., Kovács, L. (2012). Applicability of Asymptotic Tracking in Case of Type 1 Diabetes. In: Precup, RE., Kovács, S., Preitl, S., Petriu, E. (eds) Applied Computational Intelligence in Engineering and Information Technology. Topics in Intelligent Engineering and Informatics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28305-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28305-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28304-8

  • Online ISBN: 978-3-642-28305-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics