Skip to main content

Clustering of Interval Data Using Self-Organizing Maps – Application to Meteorological Data

  • Chapter
Applied Computational Intelligence in Engineering and Information Technology

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 1))

  • 649 Accesses

Abstract

The self-organizing map is a kind of artificial neural network used to map high dimensional data into a low dimensional space. This chapter presents a self-organizing map to do unsupervised clustering for interval data. This map uses an extension of the Euclidian distance to compute the proximity between two vectors of intervals where each neuron represents a cluster. The performance of this approach is then illustrated and discussed while applied to temperature interval data coming from Chinese meteorological stations. The bounds of each interval are the measured minimal and maximal values of the temperature. In the presented experiments, stations of similar climate regions are assigned to the same neuron or to a neighbor neuron on the map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cazes, P., Chouakria, A., Diday, E., Schektman, Y.: Extension de l’analyse en composantes principales à des données de type intervalle. Rev. Stat. Appl. 14, 5–24 (1997)

    Google Scholar 

  2. Chouakria, A.: Extension des méthodes d’analyse factorielle à des données de type intervalle. PhD dissertation, Université Paris-Dauphine (1998)

    Google Scholar 

  3. Billard, L., Diday, E.: Regression analysis for interval-valued data. In: Kiers, H., Rasson, J.-P., Groenen, P., Schader, M. (eds.) Data Analysis, Classification, and Related Methods, Proceedings of 7th Conference of the International Federation of Classification Societies (IFCS 2000), pp. 369–374. Springer, Heidelberg (2000)

    Google Scholar 

  4. Rossi, F., Conan-Guez, B.: Multi-layer perceptron on interval data. In: Jajuga, K., Sokolowski, A., Bock, H.-H. (eds.) Classification, Clustering, and Data Analysis, pp. 427–436. Springer, Berlin (2002)

    Chapter  Google Scholar 

  5. Chavent, M., Lechevallier, Y.: Dynamical clustering of interval data: optimization of an adequacy criterion based on Hausdorff distance. In: Jajuga, K., Sokolowski, A., Bock, H.-H. (eds.) Classification, Clustering, and Data Analysis, pp. 53–60. Springer, Berlin (2002)

    Chapter  Google Scholar 

  6. Barnsley, M.: Fractals everywhere, 2nd edn. Academic Press (1993)

    Google Scholar 

  7. Chavent, M.: Analyse des données symboliques. Une méthode divisive de classifi-cation. PhD dissertation, Université Paris-Dauphine (1997)

    Google Scholar 

  8. Bock, H.-H.: Clustering methods and Kohonen maps for symbolic data. J. Jpn. Soc. Comput. Stat. 15, 217–229 (2003)

    MathSciNet  Google Scholar 

  9. Hamdan, H., Govaert, G.: Classification de données de type intervalle via l’algorithme EM. In: Proceedings of XXXVeme Journées de Statistique (SFdS), Lyon, France, pp. 549–552 (2003)

    Google Scholar 

  10. Hamdan, H., Govaert, G.: Modélisation et classification de données imprécises. In: Proceedings of Premier Congrès International sur les Modélisations Numériques Appliquées (CIMNA 2003), Beyrouth, Liban, pp. 16–19 (2003)

    Google Scholar 

  11. Hamdan, H., Govaert, G.: Mixture model clustering of uncertain data. In: Proceeding of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2005), Reno, Nevada, USA, pp. 879–884 (2005)

    Google Scholar 

  12. Hamdan, H., Govaert, G.: CEM algorithm for imprecise data. Application to flaw diagnosis using acoustic emission. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC 2004), The Hague, The Netherlands, pp. 4774–4779 (2004)

    Google Scholar 

  13. Hamdan, H., Govaert, G.: Int-EM-CEM algorithm for imprecise data. Comparison with the CEM algorithm using Monte Carlo simulations. In: Proceedings of IEEE International Conference on Cybernetics and Intelligent Systems (IEEE CIS 2004), pp. 410–415 (2004)

    Google Scholar 

  14. Chavent, M.: An Hausdorff distance between hyper-rectangles for clustering interval data. In: Banks, D., House, L., McMorris, F.-R., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and Data Mining Applications, pp. 333–340. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. De Souza, R.M.C.R., De Carvalho, F.A.T.: Clustering of interval data based on city-block distances. Pattern Recognit. Lett. 25, 353–365 (2004)

    Article  Google Scholar 

  16. De Souza, R.M.C.R., De Carvalho, F.A.T., Tenrio, C.P., Lechevallier, Y.: Dynamic cluster methods for interval data based on Mahalanobis distances. In: Proceedings of 9th Conference of the International Federation of Classification Societies (IFCS 2004), pp. 351–360. Springer, Heidelberg (2004)

    Google Scholar 

  17. El Golli, A., Conan-Guez, B., Rossi, F.: Self-organizing maps and symbolic data. J. Symb. Data Anal. (JSDA) 2 (2004)

    Google Scholar 

  18. Kohonen, T.: Self organization and associative memory, 2nd edn. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  19. Kohonen, T.: Self-organizing maps, 3rd edn. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  20. De Carvalho, F.A.T., Brito, P., Bock, H.-H.: Dynamic clustering for interval data based on L2 distance. Comput. Stat. 21, 231–250 (2006)

    Article  MATH  Google Scholar 

  21. Hajjar, C., Hamdan, H.: Self-organizing map based on L2 distance for interval-valued data. In: Proceedings of IEEE 6th International Symposium on Applied Computational Intelligence and Informatics (IEEE SACI 2011), Timisoara, Romania, pp. 317–322 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Hajjar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Hajjar, C., Hamdan, H. (2012). Clustering of Interval Data Using Self-Organizing Maps – Application to Meteorological Data. In: Precup, RE., Kovács, S., Preitl, S., Petriu, E. (eds) Applied Computational Intelligence in Engineering and Information Technology. Topics in Intelligent Engineering and Informatics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28305-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28305-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28304-8

  • Online ISBN: 978-3-642-28305-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics