Skip to main content

Modeling of Multi-Converter FACTS in Power Flow Analysis

  • Chapter
  • 3340 Accesses

Part of the book series: Power Systems ((POWSYS))

Abstract

This chapter discusses the recent developments in modeling of multi-functional multi-converter FACTS-devices in power flow analysis. The objectives of this chapter are:

1. to model not only the well-recognized two-converter shunt-series FACTS-device - UPFC, but also the latest multi-line FACTS-devices such as IPFC, GUPFC, VSC-HVDC and M-VSC-HVDC in power flow analysis,

2. to establish multi-control functional models of these multi-converter FACTS-devices to compare the control performance of these FACTS-devices.

3. to handle the small impedances of coupling transformers of FACTS-devices in power flow analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Song, Y.H., John, A.T.: Flexible AC Transmission Systems. IEE Press, London (1999)

    Google Scholar 

  2. Hingorani, N.G., Gyugyi, L.: Understanding FACTS – concepts and technology of flexible ac transmission systems. IEEE Press, New York (2000)

    Google Scholar 

  3. Fardanesh, B., Henderson, M., Shperling, B., Zelingher, S., Gyugyi, L., Schauder, C., Lam, B., Mounford, J., Adapa, R., Edris, A.: Convertible static compensator: application to the New York transmission system. In: CIGRE 14-103, Paris, France (1998)

    Google Scholar 

  4. Fardanesh, B., Shperling, B., Uzunovic, E., Zelingher, S.: Multi-converter FACTS devices: the generalized unified power flow controller (GUPFC). In: Proceedings of IEEE PES Summer Meeting, Seattle, USA (2000)

    Google Scholar 

  5. Zhang, X.P., Handschin, E., Yao, M.M.: Modeling of the generalized unified power flow controller in a nonlinear interior point OPF. IEEE Trans. on Power Systems 16(3), 367–373 (2001)

    Article  Google Scholar 

  6. Zhang, X.P.: Modelling of the interline power flow controller and generalized unified power flow controller in Newton power flow. IEE Proc. - Generation, Transmission and Distribution 150(3), 268–274 (2003)

    Article  Google Scholar 

  7. Schauder, C., Gernhardt, M., Stacey, E., Lemak, T., Gyugyi, L., Cease, T.W., Edris, A.: Development of a ±100MVar static condenser for voltage control of transmission systems. IEEE Transactions on Power Delivery 10(3), 1486–1493 (1995)

    Article  Google Scholar 

  8. Gyugyi, L., Shauder, C.D., Sen, K.K.: Static synchronous series compensator: a solid-state approach to the series compensation of transmission lines. IEEE Transactions on Power Delivery 12(1), 406–413 (1997)

    Article  Google Scholar 

  9. Sen, K.K.: SSSC - Static synchronous series compensator: theory, modeling, and applications. IEEE Transactions on Power Delivery 13(1), 241–246 (1998)

    Article  Google Scholar 

  10. Gyugyi, L., Shauder, C.D., Williams, S.L., Rietman, T.R., Torgerson, D.R., Edris, A.: The unified power flow controller: a new approach to power transmission control. IEEE Transactions on Power Delivery 10(2), 1085–1093 (1995)

    Article  Google Scholar 

  11. Sen, K.K., Stacey, E.J.: UPFC – Unified power flow controller: theory, modeling and applications. IEEE Trans. on Power Delivery 13(4), 1453–1460 (1998)

    Article  Google Scholar 

  12. Zhang, X.P., Handschin, E.: Optimal power flow control by converter based FACTS controllers. In: 7th International Conference on AC-DC Power Transmission, November 28-30 (2001)

    Google Scholar 

  13. Zhang, X.P., Handschin, E., Yao, M.: Multi-control functional static synchronous compensator (STATCOM) in power system steady state operations. Journal of Electric Power Systems Research 72(3), 269–278 (2004)

    Article  Google Scholar 

  14. Zhang, X.P.: Advanced Modeling of the multi-control functional static synchronous series compensator (SSSC) in Newton power flow. IEEE Transactions on Power Systems 18(4), 1410–1416 (2003)

    Article  Google Scholar 

  15. Nabavi-Niaki, A., Iravani, M.R.: Steady state and dynamic models of unified power flow controller (UPFC) for power system studies. IEEE Trans. on Power Systems 11(4), 1937–1943 (1996)

    Article  Google Scholar 

  16. Raman, M., Ahmed, M., Gutman, R., O’Keefe, R.J., Nelson, R.J., Bian, J.: UPFC application on the AEP system: planning considerations. IEEE Transactions on Power Systems 12(4), 1695–1701 (1997)

    Article  Google Scholar 

  17. Noroozian, M., Angquist, L., Ghandhari, M., Andersson, G.: Use of UPFC for optimal power flow control. IEEE Transactions on Power Delivery 12(4), 1629–1634 (1997)

    Article  Google Scholar 

  18. Fuerte, C.R., Acha, E., Ambriz-Perez, H.: A comprhensive Newton-Raphson UPFC model for the quadratic power flow solution of practical power networks. IEEE Transactions on Power Systems 15(1), 102–109 (2000)

    Article  Google Scholar 

  19. Handschin, E., Lehmkoester, C.: Optimal power flow for deregulated systems with FACTS-Devices. In: 13th PSCC, Trondheim, Norway, pp. 1270–1276 (1999)

    Google Scholar 

  20. Acha, E., Ambriz-Perez, H.: FACTS devices modelling in optimal power flow using Newton’s method. In: 13th PSCC, Trondheim, Norway, pp. 1277–1284 (1999)

    Google Scholar 

  21. Zhang, X.P., Handschin, E.: Advanced implementation of UPFC in a nonlinear interior point OPF. IEE Proceedings– Generation, Transmission & Distribution 148(3), 489–496 (2001)

    Article  Google Scholar 

  22. Lehmkoster, C.: Security constrained optimal power flow for an economical operation of FACTS-devices in liberalized energy markets. IEEE Transactions on Power Delivery 17(2), 603–608 (2002)

    Article  Google Scholar 

  23. Schauder, C.D., Gyugyi, L., Lund, M.R., Hamai, D.M., Rietman, T.R., Torgerson, D.R., Edris, A.: Operation of the unified power flow controller (UPFC) under practical constraints. IEEE Trans. on Power Delivery 13, 630–637 (1998)

    Article  Google Scholar 

  24. Zhang, X.P.: Comprehensive modelling of the unified power flow controller for power system control. Electrical Engineering 88(4), 241–246 (2006)

    Article  Google Scholar 

  25. Asplund, G., Eriksson, K., Svensson, K.: DC transmission based on voltage source converters. In: CIGRE SC14 Colloquium, South Africa (1997)

    Google Scholar 

  26. Asplund, G.: Application of HVDC light to power system enhancement. In: Proceedings of IEEE 2000 PES Winter Meeting, Singapore (2000)

    Google Scholar 

  27. Schetter, F., Hung, H., Christl, N.: HVDC transmission system using voltage sourced converters – design and applications. In: Proceedings of IEEE 2000 PES Summer Meeting, Seattle, USA (2000)

    Google Scholar 

  28. Lasson, T., Edris, A., Kidd, D., Aboytes, F.: Eagle pass back-to-back tie: a dual purpose application of voltage source converter technology. In: Proceedings of IEEE 2001 PES Summer Meeting, Vancouver, Canada (2001)

    Google Scholar 

  29. Jiang, H., Ekstrom, A.: Multiterminal HVDC systems in urban areas of large cities. IEEE Transactions on Power Delivery 13(4), 1278–1284 (1998)

    Article  Google Scholar 

  30. Lu, W., Ooi, B.T.: DC overvoltage control during loss of converter in multiterminal voltage-source converter-based HVDC (M-VSC-HVDC). IEEE Trans. on Power Delivery 18(3), 915–920 (2003)

    Article  Google Scholar 

  31. Zhang, X.P.: Multiterminal voltage-sourced converter based HVDC models for power flow analysis. IEEE Transactions on Power Systems 18(4), 1877–1884 (2004)

    Article  Google Scholar 

  32. Hochgraf, C., Lasseter, R.H.: A transformer-less static synchronous compensator employing a multi-level inverter. IEEE Trans. on Power Delivery 12(2), 881–887 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, XP., Rehtanz, C., Pal, B. (2012). Modeling of Multi-Converter FACTS in Power Flow Analysis. In: Flexible AC Transmission Systems: Modelling and Control. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28241-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28241-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28240-9

  • Online ISBN: 978-3-642-28241-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics