Skip to main content

Efficient Algorithms for Network Localization Using Cores of Underlying Graphs

  • Conference paper
  • 613 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7111))

Abstract

Network localization is important for networks with no prefixed positions of network nodes such as sensor networks. We are given a subset of the set of \(\binom{n}{2}\) pairwise distances among n sensors in some Euclidean space. We want to determine the positions of each sensors from the (partial) distance information. The input can be seen as an edge weighted graph. In this paper, we present some efficient algorithms that solve this problem using the structures of input graphs, which we call the cores of them. For instance, we present a polynomial-time algorithm solving the network localization problem for graphs with connected dominating sets of bounded size. This algorithm allows us to have an FPT algorithm for some restricted instances such as graphs with connected vertex covers of bounded size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, E.M., Halldórsson, M.M., Hassin, R.: Approximating the tree and tour covers of a graph. Inform. Process. Lett. 47, 275–282 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aspnes, J., Eren, T., Goldenberg, D.K., Morse, A.S., Whiteley, W., Yang, Y.R., Anderson, B.D.O., Belhumeur, P.N.: A theory of network localization. IEEE Trans. Mobile Comput. 5, 1663–1678 (2006)

    Article  Google Scholar 

  3. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inform. Process. Lett. 8, 121–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhatt, S.N., Cosmadakis, S.S.: The complexity of minimizing wire lengths in VLSI layouts. Inform. Process. Lett. 25, 263–267 (1987)

    Article  MATH  Google Scholar 

  5. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86, 165–177 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corke, P., Hrabar, S., Peterson, R., Rus, D., Saripalli, S., Sukhatme, G.: Autonomous deployment and repair of a sensor network using an unmanned aerial vehicle. In: IEEE International Conference on Robotics and Automation (2004)

    Google Scholar 

  7. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discrete Appl. Math. 3, 163–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101, 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks: Theory and Practice. Wiley (2010)

    Google Scholar 

  10. Downey, R.G., Estivill-Castro, V., Fellows, M.R., Prieto, E., Rosamond, F.A.: Cutting up is hard to do: the parameterized complexity of k-cut and related problems. Electron. Notes Theor. Comput. Sci. 78, 209–222 (2003)

    Article  MATH  Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  12. Feder, T., Motwani, R.: On the graph turnpike problem. Inform. Process. Lett. 109, 774–776 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835–855 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)

    Google Scholar 

  15. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals of Discrete Mathematics, vol. 57. North Holland (2004)

    Google Scholar 

  16. Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. AMS (1993)

    Google Scholar 

  17. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants. Theory Comput. Syst. 41, 501–520 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  19. Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51, 326–362 (2008)

    Article  Google Scholar 

  20. Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of graphs. J. Combin. Theory Ser. B 94, 1–29 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laurent, M.: Polynomial instances of the positive semidefinite and euclidean distance matrix completion problems. SIAM J. Matrix Anal. Appl. 22, 874–894 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: 17th Allerton Conf. Commun. Control Comput., pp. 480–489 (1979)

    Google Scholar 

  25. Saxe, J.B.: Two papers on graph embedding problems. Technical Report CMU-CS-80-102, Department of Computer Science, Carnegie-Mellon University (1980)

    Google Scholar 

  26. Sohraby, K., Minoli, D., Znati, T.: Wireless Sensor Networks: Technology, Protocols, and Applications. Wiley-Interscience (2007)

    Google Scholar 

  27. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas Erlebach Sotiris Nikoletseas Pekka Orponen

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, M., Otachi, Y., Tokuyama, T. (2012). Efficient Algorithms for Network Localization Using Cores of Underlying Graphs. In: Erlebach, T., Nikoletseas, S., Orponen, P. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2011. Lecture Notes in Computer Science, vol 7111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28209-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28209-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28208-9

  • Online ISBN: 978-3-642-28209-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics