Skip to main content

Wireless Capacity with Arbitrary Gain Matrix

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7111))

Abstract

Given a set of wireless links, a fundamental problem is to find the largest subset that can transmit simultaneously, within the SINR model of interference. Significant progress on this problem has been made in recent years. In this note, we study the problem in the setting where we are given a fixed set of arbitrary powers each sender must use, and an arbitrary gain matrix defining how signals fade. This variation of the problem appears immune to most algorithmic approaches studied in the literature. Indeed it is very hard to approximate since it generalizes the max independent set problem. Here, we propose a simple semi-definite programming approach to the problem that yields constant factor approximation, if the optimal solution is strictly larger than half of the input size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chafekar, D., Kumar, V., Marathe, M., Parthasarathy, S., Srinivasan, A.: Cross-layer Latency Minimization for Wireless Networks using SINR Constraints. In: Mobihoc (2007)

    Google Scholar 

  2. Chlamtac, E.: Approximation algorithms using hierarchies of semidefinite programming relaxations. In: FOCS, pp. 691–701. IEEE Computer Society (2007)

    Google Scholar 

  3. Chlamtac, E., Singh, G.: Improved Approximation Guarantees through Higher Levels of SDP Hierarchies. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 49–62. Springer, Heidelberg (2008)

    Google Scholar 

  4. Dams, J., Hoefer, M., Kesselheim, T.: Convergence Time of Power-Control Dynamics. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 637–649. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Fanghänel, A., Kesselheim, T., Räcke, H., Vöcking, B.: Oblivious interference scheduling. In: PODC, pp. 220–229 (August 2009)

    Google Scholar 

  6. Fanghänel, A., Keßelheim, T., Vöcking, B.: Improved Algorithms for Latency Minimization in Wireless Networks. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 447–458. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goussevskaia, O., Halldórsson, M.M., Wattenhofer, R., Welzl, E.: Capacity of Arbitrary Wireless Networks. In: INFOCOM, pp. 1872–1880 (April 2009)

    Google Scholar 

  9. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. (April 2011), http://cvxr.com/cvx

  10. Grönkvist, J., Hansson, A.: Comparison between graph-based and interference-based STDMA scheduling. In: Mobihoc, pp. 255–258 (2001)

    Google Scholar 

  11. Halldórsson, M.M., Mitra, P.: Nearly Optimal Bounds for Distributed Wireless Scheduling in the SINR Model. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 625–636. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Halldórsson, M.M., Mitra, P.: Wireless Capacity with Oblivious Power in General Metrics. In: SODA (2011)

    Google Scholar 

  13. Halldórsson, M.M., Wattenhofer, R.: Wireless Communication Is in APX. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. In: SODA, pp. 329–337 (2000)

    Google Scholar 

  15. Halperin, E., Nathaniel, R., Zwick, U.: Coloring k-colorable graphs using relatively small palettes. J. Algorithms 45, 72–90 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The Topology of Wireless Communication. In: STOC (2011)

    Google Scholar 

  17. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM Trans. Algorithms 5, 41:1–41:8 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite programming. J. ACM 45, 246–265 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kesselheim, T.: A Constant-Factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model. In: SODA (2011)

    Google Scholar 

  20. Kesselheim, T., Vöcking, B.: Distributed Contention Resolution in Wireless Networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–178. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Krivelevich, M., Nathaniel, R., Sudakov, B.: Approximating coloring and maximum independent sets in 3-uniform hypergraphs. In: SODA, pp. 327–328 (2001)

    Google Scholar 

  22. Maheshwari, R., Jain, S., Das, S.R.: A measurement study of interference modeling and scheduling in low-power wireless networks. In: SenSys, pp. 141–154 (2008)

    Google Scholar 

  23. Hoefer, M., Thomas Kesselheim, B.V.: Approximation Algorithms for Secondary Spectrum Auctions. In: SPAA (2011)

    Google Scholar 

  24. Moscibroda, T., Wattenhofer, R.: The Complexity of Connectivity in Wireless Networks. In: INFOCOM (2006)

    Google Scholar 

  25. Moscibroda, T., Oswald, Y.A., Wattenhofer, R.: How optimal are wireless scheduling protocols? In: INFOCOM, pp. 1433–1441 (2007)

    Google Scholar 

  26. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-Based Models. In: Hotnets (November 2006)

    Google Scholar 

  27. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology Control meets SINR: The Scheduling Complexity of Arbitrary Topologies. In: MOBIHOC, pp. 310–321 (2006)

    Google Scholar 

  28. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38, 49–95 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas Erlebach Sotiris Nikoletseas Pekka Orponen

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halldórsson, M.M., Mitra, P. (2012). Wireless Capacity with Arbitrary Gain Matrix. In: Erlebach, T., Nikoletseas, S., Orponen, P. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2011. Lecture Notes in Computer Science, vol 7111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28209-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28209-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28208-9

  • Online ISBN: 978-3-642-28209-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics