Skip to main content

Chemical Physics Structural Techniques

  • Chapter
  • First Online:
Pathways to Modern Chemical Physics
  • 1832 Accesses

Abstract

The prodigious growth of chemistry in the twentieth century would not have been possible without the development of chemical physics techniques allowing one to investigate molecular structures and dimensions and to define the relative positions of atoms in space, connecting molecular dynamics to reactivity and to energy transformations.

There are two possible outcomes: if the result confirms the hypothesis, then you’ve made a measurement. If the result is contrary to the hypothesis, you’ve made a discovery. (Enrico Fermi)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abney W, Festing ER (1881) The influence of the atomic grouping in the molecules of organic bodies on their absorption in the infra-red region of the spectrum. Philos Trans Roy Soc 172:887–918

    Article  Google Scholar 

  • Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Oxford University Press, Oxford/England

    Google Scholar 

  • Alvarez LW, Bloch F (1940) A quantitative determination of the neutron moment in absolute nuclear magnetons. Phys Rev 57:122

    Article  Google Scholar 

  • Barkla CG (1904) Energy of secondary Röntgen radiation. Philos Mag 7:543–560

    Article  Google Scholar 

  • Basov NG and Prokhorov AM (1954) First Russian ammonia maser; in Russian Zh. Eksperim i Teor Fiz 27:431

    Google Scholar 

  • Basov NG, Prochorov AM (1954) Possible methods of obtaining active molecules for a molecular oscillator. Sov JETP 27:431–438, 28, 249, 1955

    CAS  Google Scholar 

  • Bellamy L (1958) Infrared spectra of complex molecules. Wiley, New York

    Google Scholar 

  • Bijvoet JM (1949) Phase determination in direct Fourier-synthesis of crystal structures. Proc K Ned Akad Wet B52:313–314

    Google Scholar 

  • Bijvoet JM (1951) X-ray analysis of crystals. Butterworths, London

    Google Scholar 

  • Bjerrum N (1914) The ultra-red spectra of gases. The configuration of the carbon dioxide molecule and the laws of intramolecular forces. Ber Deutch Phys Ges 116:737–753

    Google Scholar 

  • Bleaney B, Penrose RP (1946) Ammonia spectrum in the 1 cm. Wave-length region. Nature 157:339–340

    Article  CAS  Google Scholar 

  • Bloch F, Hansen WW, Packard ME (1946a) Nuclear induction. Phys Rev 70:460–473

    Article  CAS  Google Scholar 

  • Bloch F, Hansen WW, Packard M (1946b) The nuclear induction experiment. Phys Rev 70:474

    Article  CAS  Google Scholar 

  • Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679

    Article  CAS  Google Scholar 

  • Bloembergen N (1956) Proposal for a new type solid state maser. Phys Rev 104:324

    Article  CAS  Google Scholar 

  • Bluhm MM, Bodo C, Dintzis HM, Kendrew JC (1958) The crystal structure of myoglobin. IV. A Fourier projection of sperm-whale myoglobin by the method of isomorphous replacement. Proc Roy Soc Lond A246:369

    Google Scholar 

  • Blume RJ (1958) Electron spin relaxation times in sodium-ammonia solutions. Phys Rev 109:1867

    Article  CAS  Google Scholar 

  • Bowers KD, Mims WB (1959) Paramagnetic relaxation in nickel fluosilicate. Phys Rev 115:285

    Article  CAS  Google Scholar 

  • Bragg WH, Bragg WL (1913a) The reflection of X-rays by crystals. Proc Roy Soc A88:428

    Google Scholar 

  • Bragg WH, Bragg WL (1913b) The structure of the diamond. Proc Roy Soc A89:277–291

    Google Scholar 

  • Bragg WL (1913a) The diffraction of short electromagnetic waves by a crystal. Proc Camb Philos Soc 17:43–57

    CAS  Google Scholar 

  • Bragg WL (1913b) The structure of some crystals as indicated by their diffraction of X-rays. Proc Roy Soc Lond A 89:248–277

    Article  CAS  Google Scholar 

  • Bragg WL (1914) The analysis of crystals by the X-ray spectrometer. Proc Roy Soc A89:468–489

    Google Scholar 

  • Brockhouse BN, Stewart AT (1958) Normal modes of aluminum by neutron spectrometry. Rev Mod Phys 30:236–249

    Article  CAS  Google Scholar 

  • Califano S (1976) Vibrational states. Wiley, London

    Google Scholar 

  • Califano S, Schettino V, Neto N (1981) Lattice dynamics of molecular crystals, Lecture notes in chemistry. Springer, New York

    Book  Google Scholar 

  • Cleeton CE, Williams NH (1933) A magnetostatic oscillator for the generation of 1 to 3 cm waves. Phys Rev 44:421

    Article  Google Scholar 

  • Cleeton CE, Williams NH (1934) Electromagnetic waves of 1.1 cm wave-length and the absorption spectrum of ammonia. Phys Rev 45:234

    Article  CAS  Google Scholar 

  • Crawford BL (1940) Infra‐red and Raman spectra of polyatomic molecules XII. Methyl acetylene. J Chem Phys 8:526

    Article  CAS  Google Scholar 

  • Davidson WL, Morton GA, Shull CG, Wollan EO (1947) Neutron diffraction analysis of NaH and NaD, vol 842, Report number MDDC. Oak Ridge, US Atomic Energy Commission (AEC), April 28

    Google Scholar 

  • Debye P, Scherrer P (1916) Interferenzen an regellos orientierten Teilchen im Röntgenlicht I. Phys Z 17:277–83

    CAS  Google Scholar 

  • Debye P, Scherrer P (1917) Interferenzen an regellos orientierten Teilchen im Röntgenlicht III (Über die Konstitution von Graphit und amorpher Kohle). Phys Z 18:291

    CAS  Google Scholar 

  • Dickinson WC (1950) Hartree computation of the internal diamagnetic field for atoms. Phys Rev 80:563

    Article  CAS  Google Scholar 

  • Einstein A (1917) Zur Quantentheorie der Strahlung. Phys Z 18:121–128

    CAS  Google Scholar 

  • Fraser GT, Lovas FJ, Suenram RD, Nelson DD, Klemperer W (1986) Rotational spectrum and structure of CF3H–NH3. Chem Phys 84:5983

    CAS  Google Scholar 

  • Friedrich W, Knipping P, Laue M (1912) Interferenz-Erscheinungen bei Röntgenstrahlen, Eine quantitative Prüfung der Theorie für den Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsberichte Bayer Akad Wiss 303–322; reprint in: Ann Phys (1913) 41:971–988

    Google Scholar 

  • Genzel L, Eckhardt W (1954) Spektraluntersuchungen im Gebiet um 1 mm Wellenlänge. Z Phys 139:578–591

    Article  CAS  Google Scholar 

  • Gordon JP, Zeiger HJ, Townes CH (1954a) Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3. Phys Rev 95:282

    Article  CAS  Google Scholar 

  • Gordon JP, Zeiger HJ, Townes CH (1954b) The maser–new type of microwave amplifier, frequency standard, and spectrometer. Phys Rev 99:1264

    Article  Google Scholar 

  • Gordon JP, Bowers KD (1958) Microwave spin echoes from donor electrons in silicon. Phys Rev Lett 1:368–369

    Article  CAS  Google Scholar 

  • Gordy W (1948) Microwave spectroscopy. Rev Mod Phys 20:668–717

    Article  CAS  Google Scholar 

  • Hahn E (1950) Spin echoes. Phys Rev 80:580

    Article  Google Scholar 

  • Hartley WN, Huntingdon AK (1879) Spectra of organic compounds. Proc Roy Soc 28:233

    Google Scholar 

  • Hauptman H, Karle J (1956) Structure invariant and semivariants for non-centrosymmetric space groups. Acta Cyst 9:45–55

    Article  CAS  Google Scholar 

  • Herschbach DR (1956) Internal barrier of propylene oxide from the microwave. Spectrum, I. J Chem Phys 25:358

    Article  CAS  Google Scholar 

  • Hull AW (1917) A new method of X-ray crystal analysis. Phys Rev 10:661–696

    Article  CAS  Google Scholar 

  • Kemble E (1916) The distribution of angular velocities among diatomic gas. Phys Rev 8:689

    Article  CAS  Google Scholar 

  • Kopfermann H, Ladenburg R (1928) Bildung und Vernichtung angeregter Atome. Z Phys 48:26–50

    Article  CAS  Google Scholar 

  • Landsberg GS, Mandelstam LI (1928) Über die Lichtzerstreuung in Kristallen. Z Phys 50:769–780

    Article  CAS  Google Scholar 

  • Laue M (von) Ph.D., Universität Berlin (1903) Über die Interferenzerscheinungen an planparallelen Platten. Ann Phys 318:163181, 1904

    Google Scholar 

  • Laue M (1912) Eine quantitative Prüfung der Theorie für die Interferenzerscheinungen bei Röntgenstrahlen. Berichte Bav Acad Sci 363–373 reprinted in Ann. Phys. (1913), 41, 989-1002

    Google Scholar 

  • Leomte LJ (1928) Spectre Infrarouge. Les Presses Universitaires, Paris

    Google Scholar 

  • Lide DR Jr (1959) Microwave spectrum of trimethylarsine. Spectrochim Acta 15:473–476

    Article  Google Scholar 

  • Mensing L (1926) The rotational-oscillation bands according to quantum mechanics. Z Phys 36:814

    Article  CAS  Google Scholar 

  • Mensing L (1927) Zur Theorie des Zusammenstoßes von Atomen mit langsamen Elektronen. Z Phys 45:603–609

    Article  CAS  Google Scholar 

  • Mims WB, Nassau K, McGee JD (1961) Spectral diffusion in electron resonance lines. Phys Rev 123:2059–2069

    Article  CAS  Google Scholar 

  • Myers RJ, Gwinn WD (1954) The microwave spectra of gases. Annu Rev Phys Chem 5:385–394

    Article  Google Scholar 

  • Nakagawa I, Mizushima S (1953) The assignments of the Raman and infrared frequencies of 1,2-Dichloroethane observed in the gaseous, liquid and solid states. J Chem Phys 21:2195–2198

    Article  CAS  Google Scholar 

  • Oppenheimer R (1925–1927) On the quantum theory of vibration-rotation bands. Proc Camb Philos Soc 23:327–335

    Article  Google Scholar 

  • Patterson AL (1934) A Fourier series method for the determination of the components of interatomic distances in crystals. Phys Rev 46:372–376

    Article  CAS  Google Scholar 

  • Peerdeman AF, van Bommel AJ, Bijvoet JM (1951) Determination of the absolute configuration of optically active compounds by means of X-rays. Nature 168:271

    Article  Google Scholar 

  • Perutz MF (1956) Isomorphous replacement and phase determination in non-centrosymmetric space groups. Acta Crystallogr 9:867

    Article  CAS  Google Scholar 

  • Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North ACT (1960) Structure of haemoglobin. A three-dimensional Fourier synthesis at 5.5Å resolution, obtained by X-ray analysis. Nature 185:416–422

    Article  CAS  Google Scholar 

  • Placzek G (1929) Zur Theorie des Ramaneffekts. Z Phys 58:585–594

    Article  CAS  Google Scholar 

  • Porto SPS, Wood DL (1962) Ruby optical maser as a Raman source. J Opt Soc Am 52:251–152

    Article  CAS  Google Scholar 

  • Proctor WG, Yu FC (1950) The dependence of a nuclear magnetic resonance frequency upon chemical compounds. Phys Rev 77:717

    Article  CAS  Google Scholar 

  • Puluj I (1899) Radiant elektrode matter and the so called fourth state. Lond Phys Mem 1:233–331

    Google Scholar 

  • Purcell EM, Torrey HC, Pound CV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    Article  CAS  Google Scholar 

  • Rabi II, Cohen VW (1933) The nuclear spin of sodium. Phys Rev 43:582

    Article  CAS  Google Scholar 

  • Rabi II (1937) Space quantization in a gyrating magnetic field. Phys Rev 51:652–54

    Article  CAS  Google Scholar 

  • Rabi II, Zacharias JR, Millman S, Kusch P (1938) A new method of measuring nuclear magnetic moment. Phys Rev 53:318

    Article  CAS  Google Scholar 

  • Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501

    Article  CAS  Google Scholar 

  • Ramsey NF (1950) Magnetic shielding of nuclei in molecules. Phys Rev 78:699–703

    Article  CAS  Google Scholar 

  • Rasetti F (1940) Scattering of thermal neutrons by crystals. Phys Rev 58:321–325

    Article  CAS  Google Scholar 

  • Röntgen WC (1895) Über eine neue Art von Strahlen. Ann Phys 300:1–11

    Article  Google Scholar 

  • Röntgen WC (1896) On a new kind of rays. Nature 53:274–276

    Google Scholar 

  • Rubens H (1894) Zur Dispersion der ultraroten Strahlen im Fluorit. Ann Phys 51:381–391

    Article  Google Scholar 

  • Shimanouchi T, Suzuki I (1961) Force constants of chloro- and bromomethanes. J Mol Spectrosc 6:277–300

    Article  CAS  Google Scholar 

  • Shimanouchi T (1972) Tables of Molecular Vibrational Frequencies Consolidated Volume II J Phys Chem Ref Data 6, 3:993–1102

    Google Scholar 

  • Smekal A (1923) Zur Quantentheorie der Dispersion. Die Naturwiss 43:873–875

    Article  Google Scholar 

  • Sommerfeld A (1912) Über die Beugung der Röntgenstrahlung. Ann Phys 38:473–506

    Article  Google Scholar 

  • Sommerfeld A (1913) Unsere gegenwärtigen Anschauungen über Röntgenstrahlung. Vortrag bei der Versammlung des Vereins zur Förderung des Unterrichtes in der Mathematik und den Naturwissenschaften, München. Gehalten Pfingsten 1913. Die Naturwissenschaften, 1:705–713

    Google Scholar 

  • Sommerfeld A (1915) Über das Spektrum der Röntgenstrahlung. Ann Phys 46:721–748

    Article  CAS  Google Scholar 

  • Sommerfeld A, Schönflies A (1928–1929) Jahrbuch der bayerischen Akademie der Wissenschaften. Schoenflies, Spencer, pp 86–87

    Google Scholar 

  • Stoicheff BP (1963) Theory of stimulated Brillouin and Raman scattering in gases. Phys Lett 7:186

    Article  Google Scholar 

  • Swalen JD, Herschbach DR (1957) Internal barrier of propylene oxide from the microwave spectrum, I. J Chem Phys 27:100–108

    Article  CAS  Google Scholar 

  • van Vleck JH, Hill EL (1928) On the quantum mechanics of the rotational distortion of molecular spectral terms. Phys Rev 32:250–272

    Article  Google Scholar 

  • van Vleck JH (1935) The rotational energy of polyatomic molecules. Phys Rev 47:487–494

    Article  Google Scholar 

  • Welsh HL, Crawford MF, Thomas TR, Love GR (1952) Raman spectroscopy of low-pressure gases and vapors. Can J Phys 30:577

    Article  CAS  Google Scholar 

  • Weyl H (1927) Quantenmechanik und Gruppentheorie. Z Phys 46:1–46

    Article  Google Scholar 

  • Weyl H (1928) Gruppentheorie und Quantenmechanik. Verlag S. Hirzel, Leipzig

    Google Scholar 

  • Wigner EP (1931) Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Verlag, Braunschweig

    Google Scholar 

  • Wilson EB Jr, Howard JB (1936) The vibration rotation energy levels of polyatomic molecules.I. Mathematical theory of semirigid asymmetrical top molecules. J Chem Phys 4:260–268

    Article  CAS  Google Scholar 

  • Wilson EB Jr (1941) Some mathematical methods for the study of molecular vibrations. J Chem Phys 9:76–84

    Article  CAS  Google Scholar 

  • Wilson EB Jr, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New York

    Google Scholar 

  • Wilson EB Jr (1957) On the origin of potential barriers to internal rotation in molecules. PNAS 43:816–820

    Article  CAS  Google Scholar 

  • Žáček A (1924) Nová metoda k vytvorení netlumenych oscilací [New method of generating undamped oscillations], Časopis pro pěstování matematiky a fysiky [Journal for the Cultivation of Mathematics and Physics] 53:378–380

    Google Scholar 

  • Zavoisky E (1945a) Relaxation of liquid solutions for perpendicular fields. J Phys USSR 9:211–216

    Google Scholar 

  • Zavoisky E (1945b) Spin-magnetic resonance in paramagnetics. J Phys USSR 9:245

    Google Scholar 

  • Zavoisky E (1946) Spin magnetic resonance in the decimetre-wave region. J Phys USSR 10:197–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Califano, S. (2012). Chemical Physics Structural Techniques. In: Pathways to Modern Chemical Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28180-8_4

Download citation

Publish with us

Policies and ethics