Skip to main content

Probing Electronic Transport of Individual Nanostructures with Atomic Precision

  • Conference paper
  • First Online:
Atomic Scale Interconnection Machines

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 1000 Accesses

Abstract

Accessing individual nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Local electrical contacts, namely nanoelectrodes, are often fabricated by using top-down lithography and chemical etching techniques. These processes however lack atomic precision and introduce the possibility of contamination. Here, we review recent reports on the application of a field-induced emission process in the fabrication of local contacts onto individual nanowires and nanotubes with atomic spatial precision. In this method, gold nanoislands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable process to ensure both electrically conductive and mechanically reliable contacts. The applicability of the technique has been demonstrated in a wide variety of nanostructures, including silicide atomic wires, carbon nanotubes, and copper nanowires. These local contacts bridge the nanostructures and the transport probes, allowing for the measurements of both electrical transport and scanning tunneling microscopy on the same nanostructures in situ. The direct correlation between electronic and transport properties and atomic structures can be explored on individual nanostructures at the unprecedented atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Jonge, N., Lamy, Y., Kaiser, M.: Controlled mounting of individual multiwalled carbon nanotubes on support tips. Nano Lett. 3, 1621–1624 (2003)

    Article  ADS  Google Scholar 

  2. Decossas, S., et al.: Nanomanipulation by atomic force microscopy of carbon nanotubes on a nanostructured surface. Surf. Sci. 543, 57–62 (2003)

    Article  ADS  Google Scholar 

  3. Duan, X., Zhang, J., Ling, X., Liu, Z.: Nano-welding by scanning probe microscope. J. Am. Chem. Soc. 127, 8268–8269 (2005)

    Article  Google Scholar 

  4. Grill, L., et al.: Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotech. 2, 687–691 (2007)

    Article  ADS  Google Scholar 

  5. Wang, Y. G., et al.: Ohmic contact junction of carbon nanotubes fabricated by in situ electron beam deposition. Nanotechnology 17, 6011 (2006)

    Google Scholar 

  6. Wilms, M., Conrad, J., Vasilev, K., Kreiter, M., Wegner, G.: Manipulation and conductivity measurements of gold nanowires. Appl. Surf. Sci. 238, 490–494 (2004)

    Article  ADS  Google Scholar 

  7. Matsui, S., et al.: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B 18, 3181 (2000)

    Google Scholar 

  8. Kent, A.D., Shaw, T.M., von Molnar, S., Awschalom, D.D.: Growth of high aspect ratio nanometer-scale magnets with chemical vapor deposition and scanning tunneling microscopy. Science 262, 1249–1252 (1993)

    Article  ADS  Google Scholar 

  9. Sato, A., Tsukamoto, Y.: Nanometre-scale recording and erasing with the scanning tunnelling microscope. Nature 363, 431–432 (1993)

    Article  ADS  Google Scholar 

  10. Qin, S., et al.: Contacting nanowires and nanotubes with atomic precision for electronic transport. Appl. Phys. Lett. 100, 103103 (2012)

    Google Scholar 

  11. Qin, S., et al.: Correlating electronic transport to atomic structures in self-assembled quantum wires. Nano. Lett. 12, 938–942 (2012). doi: 10.1021/nl24003s

    Google Scholar 

  12. Kim, T.-H., et al.: A cryogenic quadraprobe scanning tunneling microscope system with fabrication capability for nanotransport research. Rev. Sci. Instrum. 78, 123701 (2007)

    Article  ADS  Google Scholar 

  13. Mamin, H.J., Guethner, P.H., Rugar, D.: Atomic emission from a gold scanning-tunneling-microscope tip. Phys. Rev. Lett. 65, 2418 (1990)

    Article  ADS  Google Scholar 

  14. Bessho, K., Hashimoto, S.: Fabricating nanoscale structures on Au surface with scanning tunneling microscope. Appl. Phys. Lett. 65, 2142–2144 (1994)

    Article  ADS  Google Scholar 

  15. Koyanagi, H., Hosaka, S., Imura, R., Shirai, M.: Field evaporation of gold atoms onto a silicon dioxide film by using an atomic force microscope. Appl. Phys. Lett. 67, 2609–2611 (1995)

    Article  ADS  Google Scholar 

  16. Park, J.Y., Phaneuf, R.J.: Polarity dependence in pulsed scanning tunneling microscopy fabrication and modification of metal nanodots on silicon. J. Appl. Phys. 92, 2139–2143 (2002)

    Article  ADS  Google Scholar 

  17. Pumarol, M. E. et al. Controlled deposition of gold nanodots using non-contact atomic force microscopy. Nanotechnology 16, 1083 (2005)

    Google Scholar 

  18. Yang, Z., Hoffmann, S., Lichtenwalner, D.J., Krim, J., Kingon, A.I.: Resolution of the transfer direction of field-evaporated gold atoms for nanofabrication and microelectromechanical system applications. Appl. Phys. Lett. 98, 044102 (2011)

    Article  ADS  Google Scholar 

  19. Chang, C.S., Su, W.B., Tsong, T.T.: Field evaporation between a gold tip and a gold surface in the scanning tunneling microscope configuration. Phys. Rev. Lett. 72, 574 (1994)

    Article  ADS  Google Scholar 

  20. Pascual, J.I., et al.: Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71, 1852 (1993)

    Article  ADS  Google Scholar 

  21. Harrison, B.C., Ryan, P., Boland, J.J.: STM and DFT study of the Gd wetting layer reconstructions on the Si(0 0 1)-2 × 1 surface. Surf. Sci. 582, 79–89 (2005)

    Article  ADS  Google Scholar 

  22. Liu, B.Z., Nogami, J.: An STM study of the Si(0 0 1) (2 × 7)-Gd. Dy surface. Surf. Sci. 540, 136–144 (2003)

    Article  ADS  Google Scholar 

  23. Yeom, H.W., Kim, Y.K., Lee, E.Y., Ryang, K.D., Kang, P.G.: Robust one-dimensional metallic band structure of silicide nanowires. Phys. Rev. Lett. 95, 205504 (2005)

    Article  ADS  Google Scholar 

  24. Kim, T.-H., et al.: Large discrete resistance jump at grain boundary in copper nanowire. Nano Lett. 10, 3096–3100 (2010)

    Article  ADS  Google Scholar 

  25. Rathmell, A.R., Bergin, S.M., Hua, Y.-L., Li, Z.-Y., Wiley, B.J.: The growth mechanism of copper nanowires and their properties in flexible transparent conducting films. Adv. Mater. 22, 3558–3563 (2010)

    Article  Google Scholar 

  26. Hellstrom, S.L., Lee, H.W., Bao, Z.: Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes. ACS Nano 3, 1423–1430 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U. S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Ping Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qin, S., Li, AP. (2012). Probing Electronic Transport of Individual Nanostructures with Atomic Precision. In: Joachim, C. (eds) Atomic Scale Interconnection Machines. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28172-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28172-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28171-6

  • Online ISBN: 978-3-642-28172-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics