Skip to main content

Atomic-Scale Devices in Silicon by Scanning Tunneling Microscopy

  • Conference paper
  • First Online:
Atomic Scale Interconnection Machines

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 1021 Accesses

Abstract

The ability to control matter at the atomic scale and build devices with atomic precision is one of the core challenges of nanotechnology. In this chapter, we outline a complete fabrication strategy for building atomic-scale devices in silicon with atomic precision in all three-dimensions. Using scanning tunneling microscopy (STM)-based lithography we have imaged and placed phosphorus dopant atoms in precise locations on a silicon surface before encapsulating them with silicon using low temperature molecular beam epitaxy to activate the dopants. Etched registration markers allow us to locate and align external electrical contacts to the buried STM-patterned dopant atoms so that we can perform electron transport measurements outside the microscope at cryogenic temperatures. Using this unique strategy we discuss the realization of conducting nanoscale wires, tunnel junctions and all epitaxial single electron transistors. Finally we provide an outlook to achieving truly single atom device architectures toward our ultimate goal of realizing a silicon-based quantum computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koenraad, P.M., Flatte, M.E.: Single dopants in semiconductors. Nat. Mater. 10(2), 91–100 (2011)

    Article  ADS  Google Scholar 

  2. Shinada, T., Okamoto, S., Kobayashi, T., Ohdomari, I.: Enhancing semiconductor device performance using ordered dopant arrays. Nature 437(7062), 1128–1131 (2005)

    Article  ADS  Google Scholar 

  3. Lansbergen, G.P., Rahman, R., Wellard, C.J., Woo, I., Caro, J., Collaert, N., Biesemans, S., Klimeck, G., Hollenberg, L.C.L., Rogge, S.: Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat. Phys. 4(8), 656–661 (2008)

    Article  Google Scholar 

  4. Roy, S., Asenov, A.: Where do the dopants go? Science 309(5733), 388–390 (2005)

    Google Scholar 

  5. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)

    Article  ADS  Google Scholar 

  6. Feynman, R.P.: Feynman Lectures on Computation. Addison-Wesley, Reading (1996)

    Google Scholar 

  7. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser, S. (ed.) 35th Annual Symposium on Foundations of Computer Science, Proceedings IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  8. Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68(3), 733–753 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  9. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Vrijen, R., Yablonovitch, E., Wang, K., Jiang, H.W., Balandin, A., Roychowdhury, V., Mor, T., DiVincenzo, D.: Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306 (2000)

    Article  ADS  Google Scholar 

  12. de Sousa, R., Delgado, J.D., Das Sarma, S.: Silicon quantum computation based on magnetic dipolar coupling. Phys. Rev. A 70(5), 052304 (2004)

    Article  ADS  Google Scholar 

  13. Hollenberg, L.C.L., Dzurak, A.S., Wellard, C., Hamilton, A.R., Reilly, D.J., Milburn, G.J., Clark, R.G.: Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B 69(11), 4 (2004)

    Article  Google Scholar 

  14. Tyryshkin, A.M., Lyon, S.A., Astashkin, A.V., Raitsimring, A.M.: Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68(19), 193207 (2003)

    Article  ADS  Google Scholar 

  15. Morton, J.J.L., Tyryshkin, A.M., Brown, R.M., Shankar, S., Lovett, B.W., Ardavan, A., Schenkel, T., Haller, E.E., Ager, J.W., Lyon, S.A.: Solid-state quantum memory using the 31P nuclear spin. Nature 455(7216), 1085–1088 (2008)

    Article  ADS  Google Scholar 

  16. Morton, J.J.L., Lovett, B.W.: Hybrid solid-state qubits: the powerful role of electron spins. In: Langer, J.S. (ed.) Annual Review of Condensed Matter Physics, vol. 2, pp. 189–212. Annual Reviews, Palo Alto (2011)

    Google Scholar 

  17. Kohn, W.: Shallow impurity states in silicon and germanium. Solid State Phys. Adv. Res. Appl. 5, 257–320 (1957)

    Google Scholar 

  18. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120–126 (1998)

    Article  ADS  Google Scholar 

  19. Binnig, G., Rohrer, H.: Scanning tunneling microscopy. Helv. Phys. Acta 55(6), 726–735 (1982)

    Google Scholar 

  20. Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57–61 (1982)

    Article  ADS  Google Scholar 

  21. Eigler, D.M., Schweizer, E.K.: Positioning single atoms with a scanning tunnelling microscope. Nature 344(6266), 524–526 (1990)

    Article  ADS  Google Scholar 

  22. Crommie, M.F., Lutz, C.P., Eigler, D.M.: Confinement of electrons to quantum corrals on a metal surface. Science 262(5131), 218–220 (1993)

    Article  ADS  Google Scholar 

  23. Hla, S.W.: Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 23(4), 1351–1360 (2005)

    Article  ADS  Google Scholar 

  24. Moresco, F.: Manipulation of large molecules by low-temperature STM: model systems for molecular electronics. Phys. Rep. 399(4), 175–225 (2004)

    Article  ADS  Google Scholar 

  25. Otero, R., Rosei, F., Besenbacher, F.: Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces. In: Annual Review of Physical Chemistry, vol. 57. pp. 497–525. Annual Reviews, Palo Alto (2006)

    Google Scholar 

  26. Lyo, I.W., Avouris, P.: Atomic scale desorption processes induced by the scanning tunneling microscope. J. Chem. Phys. 93(6), 4479–4480 (1990)

    Article  ADS  Google Scholar 

  27. Lyding, J.W., Shen, T.C., Hubacek, J.S., Tucker, J.R., Abeln, G.C.: Nanoscale patterning and oxidation of H-passivated Si(100)-2 × 1 surfaces with an ultrahigh-vacuum scanning tunneling microscope. Appl. Phys. Lett. 64(15), 2010–2012 (1994)

    Article  ADS  Google Scholar 

  28. Hersam, M.C., Guisinger, N.P., Lyding, J.W.: Silicon-based molecular nanotechnology. Nanotechnology 11(2), 70–76 (2000)

    Article  ADS  Google Scholar 

  29. Lopinski, G.P., Wayner, D.D.M., Wolkow, R.A.: Self-directed growth of molecular nanostructures on silicon. Nature 406(6791), 48–51 (2000)

    Article  ADS  Google Scholar 

  30. Pitters, J.L., Piva, P.G., Tong, X., Wolkow, R.A.: Reversible passivation of silicon dangling bonds with the stable radical TEMPO. Nano Lett. 3(10), 1431–1435 (2003)

    Article  ADS  Google Scholar 

  31. Miwa, J.A., Eves, B.J., Rosei, F., Lopinski, G.P.: Selective adsorption of pyridine at isolated reactive sites on Si(100). J. Phys. Chem. B 109(43), 20055–20059 (2005)

    Article  Google Scholar 

  32. Tucker, J.R., Shen, T.C.: Prospects for atomically ordered device structures based on STM lithography. Solid-State Electron. 42(7–8), 1061–1067 (1998)

    Article  ADS  Google Scholar 

  33. Wada, Y.: Atom electronics: a proposal of atom/molecule switching devices. Surf. Sci. 386, 13 (1997)

    Article  Google Scholar 

  34. Goh, K.E.J., Oberbeck, L., Simmons, M.Y., Hamilton, A.R., Clark, R.G.: Effect of encapsulation temperature on Si:P delta-doped layers. Appl. Phys. Lett. 85(21), 4953–4955 (2004)

    Article  ADS  Google Scholar 

  35. Oberbeck, L., Hallam, T., Curson, N.J., Simmons, M.Y., Clark, R.G.: STM investigation of epitaxial Si growth for the fabrication of a Si-based quantum computer. Appl. Surf. Sci. 212, 319–324 (2003)

    Article  ADS  Google Scholar 

  36. Fuechsle, M., Ruess, F.J., Reusch, T.C.G., Mitic, M., Simmons, M.Y.: Surface gate and contact alignment for buried, atomically precise scanning tunneling microscopy-patterned devices. J. Vac. Sci. Technol. B 25, 2562 (2007)

    Article  Google Scholar 

  37. Ruess, F.J., Oberbeck, L., Goh, K.E.J., Butcher, M.J., Gauja, E., Hamilton, A.R., Simmons, M.Y.: The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures. Nanotechnology 16(10), 2446–2449 (2005)

    Article  ADS  Google Scholar 

  38. Schofield, S.R., Curson, N.J., Simmons, M.Y., Ruess, F.J., Hallam, T., Oberbeck, L., Clark, R.G.: Atomically precise placement of single dopants in Si. Phys. Rev. Lett. 91(13) (2003)

    Google Scholar 

  39. Ruess, F.J., Oberbeck, L., Simmons, M.Y., Goh, K.E.J., Hamilton, A.R., Hallam, T., Schofield, S.R., Curson, N.J., Clark, R.G.: Toward atomic-scale device fabrication in silicon using scanning probe microscopy. Nano Lett. 4(10), 1969–1973 (2004)

    Article  ADS  Google Scholar 

  40. O’Brien, J.L., Schofield, S.R., Simmons, M.Y., Clark, R.G., Dzurak, A.S., Curson, N.J., Kane, B.E., McAlpine, N.S., Hawley, M.E., Brown, G.W.: Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys. Rev. B 64(16), 161401(R) (2001)

    Google Scholar 

  41. Ruess, F.J., Pok, W., Reusch, T.C.G., Butcher, M.J., Goh, K.E.J., Oberbeck, L., Scappucci, G., Hamilton, A.R., Simmons, M.Y.: Realization of atomically controlled dopant devices in silicon. Small 3(4), 563–567 (2007)

    Article  Google Scholar 

  42. Wilson, H.F., Warschkow, O., Marks, N.A., Schofield, S.R., Curson, N.J., Smith, P.V., Radny, M.W., McKenzie, D.R., Simmons, M.Y.: Phosphine dissociation on the Si(001) surface. Phys. Rev. Lett. 93(22), 4 (2004)

    Article  Google Scholar 

  43. Wilson, H.F., Warschkow, O., Marks, N.A., Curson, N.J., Schofield, S.R., Reusch, T.C.G., Radny, M.W., Smith, P.V., McKenzie, D.R., Simmons, M.Y.: Thermal dissociation and desorption of PH3 on Si(001): a reinterpretation of spectroscopic data. Phys. Rev. B 74(19), 195310 (2006)

    Article  ADS  Google Scholar 

  44. Oberbeck, L., Curson, N.J., Hallam, T., Simmons, M.Y., Bilger, G., Clark, R.G.: Measurement of phosphorus segregation in silicon at the atomic scale using scanning tunneling microscopy. Appl. Phys. Lett. 85(8), 1359–1361 (2004)

    Article  ADS  Google Scholar 

  45. Oberbeck, L., Curson, N.J., Simmons, M.Y., Brenner, R., Hamilton, A.R., Schofield, S.R., Clark, R.G.: Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer. Appl. Phys. Lett. 81(17), 3197–3199 (2002)

    Article  ADS  Google Scholar 

  46. McKibbin, S.R., Clarke, W.R., Fuhrer, A., Reusch, T.C.G., Simmons, M.Y.: Investigating the regrowth surface of Si:P delta-layers toward vertically stacked three dimensional devices. Appl. Phys. Lett. 95(23), 233111 (2009)

    Article  ADS  Google Scholar 

  47. Boland, J.J.: Evidence of pairing and its role in the recombinative desorption of hydrogen from the Si(100)-2x1 surface. Phys. Rev. Lett. 67(12), 1539–1542 (1991)

    Article  ADS  Google Scholar 

  48. Warschkow, O., Wilson, H.F., Marks, N.A., Schofield, S.R., Curson, N.J., Smith, P.V., Radny, M.W., McKenzie, D.R., Simmons, M.Y.: Phosphine adsorption and dissociation on the Si(001) surface: an ab initio survey of structures. Phys. Rev. B 72(12), 125328 (2005)

    Article  ADS  Google Scholar 

  49. Schofield, S.R., Curson, N.J., Warschkow, O., Marks, N.A., Wilson, H.F., Simmons, M.Y., Smith, P.V., Radny, M.W., McKenzie, D.R., Clark, R.G.: Phosphine dissociation and diffusion on Si(001) observed at the atomic scale. J. Phys. Chem. B 110(7), 3173–3179 (2006)

    Article  Google Scholar 

  50. Fuechsle, M., Mahapatra, S., Zwanenburg, F.A., Friesen, M., Eriksson, M.A., Simmons, M.Y.: Spectroscopy of few-electron single-crystal silicon quantum dots. Nat. Nanotechnol. 5(7), 502–505 (2010)

    Article  ADS  Google Scholar 

  51. Ruess, F.J., Goh, K.E.J., Butcher, M.J., Reusch, T.C.G., Oberbeck, L., Weber, B., Hamilton, A.R., Simmons, M.Y.: Narrow, highly P-doped, planar wires in silicon created by scanning probe microscopy. Nanotechnology 18(4) (2007)

    Google Scholar 

  52. Weber, B., Mahapatra, S. Ryu, H. Lee, S. Fuhrer, A., Reusch, T.C.G., Thompson, D. L., Lee, W.C.T., Klimeck, G., Hollenberg, L. C. L., Simmons, M.Y. : Ohm’s law survives to the atomic-scale. Science 335 (6064), 64–67 (2012)

    Google Scholar 

  53. Scappucci, G., Capellini, G., Johnston, B., Klesse, W.M., Miwa, J.A., Simmons, M.Y.: A complete fabrication route for atomic-scale, donor-based devices in single-crystal germanium. Nano Lett. 11(6), 2272–2279 (2011)

    Article  ADS  Google Scholar 

  54. Simmons, M.Y., Ruess, F.J., Goh, K.E.J., Pok, W., Hallam, T., Butcher, M.J., Reusch, T.C.G., Scappucci, G.: Atomic-scale silicon device fabrication. Int. J. Nanotechnol. 5(2–3), 352–369 (2008)

    Article  ADS  Google Scholar 

  55. Ruess, F.J., Pok, W., Goh, K.E.J., Hamilton, A.R., Simmons, M.Y.: Electronic properties of atomically abrupt tunnel junctions in silicon. Phys. Rev. B 75(12) (2007)

    Google Scholar 

  56. Kouwenhoven, L.P., Marcus, C.M., McEuen, P.L., Tarucha, S., Westervelt, R.M., Wingreen, N.S.: Electron transport in quantum dots. In: Sohn, L.L., Kouwenhoven, L.P., Schon, G. (eds.) NATO Advanced Study Institute on Mesoscopic Electron Transport, Curacao, Neth Antilles, p. 105–214. Springer (1997)

    Google Scholar 

  57. Fuhrer, A., Fuechsle, M., Reusch, T.C.G., Weber, B., Simmons, M.Y.: Atomic-scale, all epitaxial in-plane gated donor quantum dot in silicon. Nano Lett. 9(2), 707–710 (2009)

    Article  ADS  Google Scholar 

  58. Lee, W.C.T., Scappucci, G., Thompson, D.L., Simmons, M.Y.: Development of a tunable donor quantum dot in silicon. Appl. Phys. Lett. 96(4) (2010).

    Google Scholar 

  59. Pierre, M., Wacquez, R., Jehl, X., Sanquer, M., Vinet, M., Cueto, O.: Single-donor ionization energies in a nanoscale CMOS channel. Nat. Nanotechnol. 5(2), 133–137 (2010)

    Article  ADS  Google Scholar 

  60. Carter, D.J., Warschkow, O., Marks, N.A., McKenzie, D.R.: Electronic structure models of phosphorus delta-doped silicon. Phys. Rev. B 79(3) (2009)

    Google Scholar 

  61. Boykin, T.B., Klimeck, G., Eriksson, M.A., Friesen, M., Coppersmith, S.N., von Allmen, P., Oyafuso, F., Lee, S.: Valley splitting in strained silicon quantum wells. Appl. Phys. Lett. 84(1), 115–117 (2004)

    Article  ADS  Google Scholar 

  62. Qian, G.F., Chang, Y.C., Tucker, J.R.: Theoretical study of phosphorous delta-doped silicon for quantum computing. Phys. Rev. B 71(4), 9 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (Project No. CE110001027) and the Army Research Office under contract number W911NF-08-1-0527. M. Y. S acknowledges a Federation Fellowship. J. A. M. thanks S. Mahapatra, G. Scappucci and M. Fuechsle for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Simmons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miwa, J.A., Simmons, M.Y. (2012). Atomic-Scale Devices in Silicon by Scanning Tunneling Microscopy. In: Joachim, C. (eds) Atomic Scale Interconnection Machines. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28172-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28172-3_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28171-6

  • Online ISBN: 978-3-642-28172-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics