Skip to main content

Circulating DNA and Next-Generation Sequencing

  • Chapter
  • First Online:

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 195))

Abstract

Personalising cancer medicine depends upon the implementation of personalised diagnostics and therapeutics. Detailed genomic screening is likely to play a central role in this. As the range of drugs and other therapies for cancer continues to increase, there is an increasingly urgent need for sensitive and specific measures of disease burden to guide treatment regimens. The ability to quantify disease burden with high accuracy and sensitivity in patients with cancer would open many potential routes to personalising therapeutic choices. For example, the intensity of therapy could be guided by the amount of disease at diagnosis; monitoring the response of patients to drugs could allow extension of the period of treatment in responders or early changeover of therapy in nonresponders; and early prediction of recurrence could allow salvage therapy to be instituted before complications of relapse develop. The detection of tumour-specific rearrangements in DNA free in the serum or plasma may provide a substantial advance in the accuracy of monitoring disease burden in patients with solid tumours.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Branford S (2007) Chronic myeloid leukemia: molecular monitoring in clinical practice. Am Soc Hematol Educ Program 2007:376

    Article  Google Scholar 

  2. Mandel P, Metais P (1948) Les acides nucleiques du plasma sanguin chez l′homme. CR Acad Sci Paris 142:241

    CAS  Google Scholar 

  3. Steinman CR (1975) Free DNA in serum and plasma from normal adults. J Clin Invest 56:512

    Article  PubMed  CAS  Google Scholar 

  4. Stroun M, Lyautey J, Lederrey C et al (2001) About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clinica chimica acta; J Clin Chem 313:139

    Article  CAS  Google Scholar 

  5. Choi JJ, Reich CF 3rd, Pisetsky DS (2005) The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells. Immunology 115:55

    Article  PubMed  CAS  Google Scholar 

  6. Jahr S, Hentze H, Englisch S et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659

    PubMed  CAS  Google Scholar 

  7. Diehl F, Li M, Dressman D et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA 102:16368

    Article  PubMed  CAS  Google Scholar 

  8. Leon SA, Shapiro B, Sklaroff DM et al (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646

    PubMed  CAS  Google Scholar 

  9. Fournie GJ, Courtin JP, Laval F et al (1995) Plasma DNA as a marker of cancerous cell death. Investigations in patients suffering from lung cancer and in nude mice bearing human tumours. Cancer Lett 91:221

    Article  PubMed  CAS  Google Scholar 

  10. Diehl F, Schmidt K, Choti MA et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14:985

    Article  PubMed  CAS  Google Scholar 

  11. Sorenson GD, Pribish DM, Valone FH et al (1994) Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomark Prev 3:67

    CAS  Google Scholar 

  12. Leary RJ, Kinde I, Diehl F et al (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2:20ra14

    Article  PubMed  Google Scholar 

  13. Esteller M, Sanchez-Cespedes M, Rosell R et al (1999) Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 59:67

    PubMed  CAS  Google Scholar 

  14. Wong IH, Lo YM, Zhang J et al (1999) Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res 59:71

    PubMed  Google Scholar 

  15. Grutzmann R, Molnar B, Pilarsky C et al (2008) Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PloS One 3:e3759

    Article  PubMed  Google Scholar 

  16. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376

    Google Scholar 

  17. Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53

    Article  PubMed  CAS  Google Scholar 

  18. McKernan KJ, Peckham HE, Costa GL et al (2009) Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res 19:1527

    Article  PubMed  CAS  Google Scholar 

  19. Campbell PJ, Stephens PJ, Pleasance ED et al (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40:722

    Article  PubMed  CAS  Google Scholar 

  20. McBrid DJ, Orpana AK, Sotiriou C et al (2010) Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosom Cancer 49:1062

    Article  Google Scholar 

  21. Umetani N, Giuliano AE, Hiramatsu SH et al (2006) Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol 24:4270

    Article  PubMed  CAS  Google Scholar 

  22. Wang M, Block TM, Steel L et al (2004) Preferential isolation of fragmented DNA enhances the detection of circulating mutated k-ras DNA. Clin Chem 50:211

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cooke, S., Campbell, P. (2012). Circulating DNA and Next-Generation Sequencing. In: Ignatiadis, M., Sotiriou, C., Pantel, K. (eds) Minimal Residual Disease and Circulating Tumor Cells in Breast Cancer. Recent Results in Cancer Research, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28160-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28160-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28159-4

  • Online ISBN: 978-3-642-28160-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics