Advertisement

Software Environment for Parallel Optimization of Complex Systems

  • Ewa Niewiadomska-Szynkiewicz
  • Michal Marks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7133)

Abstract

The paper is concerned with parallel global optimization techniques that can be applied to solve complex optimization problems, and are widely used in applied science and in engineering. We describe an integrated software platform EPOCS (Environment for Parallel Optimization of Complex Systems) that provides the framework and tools which allow to solve complex optimization problems on parallel and multi-core computers. The composition, design and usage of EPOCS is discussed. Next, we evaluate the performance of methods implemented in the EPOCS library based on numerical results for a commonly used set of functions from the literature. The case study – calculating the optimal prices of products that are sold in the market is presented to illustrate the application of our tool to a given real-life problem.

Keywords

Software systems numerical solvers global optimization parallel optimization price management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali, M.M., Torn, A.: Population set-based global optimization algorithms: Some modifications and numerical studies. Computers and Operations Research 31, 1703–1725 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Horst, R., Pardalos, P.: Handbook of Global Optimization. Kluwer (1995)Google Scholar
  3. 3.
    Michalewicz, Z., Fogel, D.B.: How to Solve it: Modern Heuristcs. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Neumaier, A., Shcherbina, O., Huyer, W., Vinko, T.: A comparison of complete global optimization solvers. Mathematical Programming 103, 335–356 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Onbasoglu, E., Ozdamar, L.: Parallel simulated annealing algorithms in global optimization. Journal of Global Optimization 19, 27–50 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Press, W.H., Tukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press (1992)Google Scholar
  7. 7.
    Schaefer, R.: Foundations of global genetic optimization. Springer, Heidelberg (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Simon, H.: Price management. North-Holland (1989)Google Scholar
  9. 9.
    Spall, J.: Introduction to Stochastic Search and Optimization. John Wiley & Sons (2003)Google Scholar
  10. 10.
    Weise, T.: Global Optimization Algorithms: Theory and Application. e-book (2009), http://www.it-weise.de/projects/book.pdf
  11. 11.
    Yang, R., Douglas, I.: Simple genetic algorithm with local tuning: Efficient global optimizing technique. Journal of Optimization Theory and Applications 98, 449–465 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zhigljavsky, A.A., Zilinskas, A.: Stochastic Global Optimization. Springer Optimization and its Applications, vol. 9. Springer, New York (2008)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ewa Niewiadomska-Szynkiewicz
    • 1
    • 2
  • Michal Marks
    • 1
    • 2
  1. 1.Research and Academic Computer Network (NASK)WarsawPoland
  2. 2.Institute of Control and Computation EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations