Simulation of Seismic Waves Propagation in Multiscale Media: Impact of Cavernous/Fractured Reservoirs

  • Victor Kostin
  • Vadim Lisitsa
  • Galina Reshetova
  • Vladimir Tcheverda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7133)


In order to simulate the interaction of seismic waves with cavernous/fractured reservoirs, a finite-difference technique based on locally refined time-and-space grids is used. The need to use these grids is due primarily to the differing scale of heterogeneities in the reference medium and the reservoir. Domain Decomposition methods allow for the separation of the target area into subdomains containing the reference medium (coarse grid) and reservoir (fine grid). Computations for each subdomain can be carried out in parallel. The data exchange between each subdomain within a group is done using MPI through nonblocking iSend/iReceive commands. The data exchange between the two groups is done simultaneously by coupling the coarse and fine grids.

The results of a numerical simulation of a carbonate reservoir are presented and discussed.


Finite-difference schemes local grid refinement domain decomposition MPI group of Processor Units Master Processor Unit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Collino, F., Fouquet, T., Joly, P.: A conservative space-time mesh refinement method for 1-D wave equation. Part I: Construction. Numerische Mathematik 95, 197–221 (2003)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Collino, F., Fouquet, T., Joly, P.: A conservative space-time mesh refinement method for 1-D wave equation. Part II: Analysis. Numerische Mathematik 95, 223–251 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Diaz, J., Grote, M.J.: Energy conserving explicit local time stepping for second-order wave equations. SIAM J. Sci. Comput. 31(3), 1985–2014 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lisitsa, V., Reshetova, G., Tcheverda, V.: Local time-space mesh refinement for finite-difference simulation of waves. In: Kreiss, G., Lotstedt, P., Malqvist, A., Neytcheva, M. (eds.) Numerical Mathematics and Advanced Applications 2009, Proceedings of ENUMATH 2009, pp. 609–616. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Mavko, G., Mukerji, T., Dvorkin, J.: Rock Physics Handbook. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  6. 6.
    Kristek, J., Moczo, P., Galis, M.: Stable discontinuous staggered grid in the finite-difference modelling of seismic motion. Geophysical Journal International 183(3), 1401–1407 (2010)CrossRefGoogle Scholar
  7. 7.
    Schuster, G.: Seismic interferometry. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Virieux, J.: P-SV wave propagation in heterogeneous media: Velocity - stress finite difference method. Geophysics 51(4), 889–901 (1986)CrossRefGoogle Scholar
  9. 9.
    Willis, M., Burns, D., Rao, R., Minsley, B., Toksoz, N., Vetri, L.: Spatial orientation and distribution of reservoir fractures from scattered seismic energy. Geophysics 71, O43–O51Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Victor Kostin
    • 1
  • Vadim Lisitsa
    • 2
  • Galina Reshetova
    • 3
  • Vladimir Tcheverda
    • 2
  1. 1.ZAO Intel A/ORussia
  2. 2.Institute of Petroleum Geology and Geophysics SB RASNovosibirskRussia
  3. 3.Institute of Computational Mathematics and Mathematical Geophysics SB RASRussia

Personalised recommendations