A Model for Efficient Onboard Actualization of an Instrumental Cyclogram for the Mars MetNet Mission on a Public Cloud Infrastructure

  • Jose Luis Vázquez-Poletti
  • Gonzalo Barderas
  • Ignacio M. Llorente
  • Pilar Romero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7133)


Until now, several heuristics for scheduling parameter sweep applications in environments such as cluster and grid have been introduced. Cloud computing has revolutionized the way applications are executed in distributed environments, as now it is the infrastructure which is adapted to the application and not vice versa. In the present contribution an astronomy application from the next mission to Planet Mars with Finnish-Russian-Spanish flag is ported on to a cloud environment, resulting in a parameter sweep profile. The number of needed executions and the deadline provided required a big quantity of computing resources in a short term and punctual situations. For this reason, we introduce and validate a model for an optimal execution on a public cloud infrastructure by means of time, cost and a metric involving both.


Execution Time Cloud Computing Virtual Machine Grid Computing Instance Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sterling, T., Stark, D.: A High-Performance Computing Forecast: Partly Cloudy. Computing in Science and Engineering 11, 42–49 (2009)CrossRefGoogle Scholar
  2. 2.
    Vouk, M.A.: Cloud computing – Issues, research and implementations. In: Proc. 30th International Conference on Information Technology Interfaces, pp. 31–40. IEEE Press (2008)Google Scholar
  3. 3.
    Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree Compared. In: Proc. Grid Computing Environments Workshop, pp. 1–10. IEEE Computer Society (2008)Google Scholar
  4. 4.
    Foster, I., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., Zhang, X.: Virtual Clusters for Grid Communities. In: Proc. 6th IEEE Int. Symp. on Cluster Computing and the Grid (CCGrid 2006), pp. 513–520. IEEE Computer Society (2006)Google Scholar
  5. 5.
    Moreno, R., Montero, R.S., Llorente, I.M.: Elastic Management of Cluster-based Services in the Cloud. In: Proc. 1st Workshop on Automated Control for Datacenters and Clouds (ACDC 2009) on the 6th International Conference on Autonomic Computing and Communications, pp. 19–24. ACM Digital Library (2009)Google Scholar
  6. 6.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.: The Eucalyptus Open-Source Cloud-Computing System. In: Proc. 9th IEEE Int. Symp. on Cluster Computing and the Grid (CCGrid 2009), pp. 124–131. IEEE Computer Society (2009)Google Scholar
  7. 7.
    Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 2nd edn. Prentice Hall (2002)Google Scholar
  8. 8.
    Chrétienne, P., Coffman Jr., E.G., Lenstra, J.K., Liu, Z. (eds.): Scheduling Theory and its Applications. John Wiley and Sons (1995)Google Scholar
  9. 9.
    El-Rewini, H., Ali, H.H., Lewis, T.G.: Task Scheduling in Multiprocessing Systems. Computer 28, 27–37 (1995)CrossRefGoogle Scholar
  10. 10.
    Hsu, T.S., Lee, J.C., Lopez, D.R., Royce, W.A.: Task Allocation on a Network of Processors. IEEE Trans. Computers 49(12), 1339–1353 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for Scheduling Parameter Sweep Applications in Grid Environments. In: Ninth Heterogeneous Computing Workshop, pp. 349–363. IEEE Computer Society Press (2000)Google Scholar
  12. 12.
    Vázquez-Poletti, J.L., Huedo, E., Montero, R.S., Llorente, I.M.: A Comparison Between two Grid Scheduling Philosophies: EGEE WMS and GridWay. Multiagent and Grid Systems 3, 1339–1353 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on the cloud: the Montage example. In: Procs. 2008 ACM/IEEE Conference on Supercomputing, SC 2008. IEEE Press (2008)Google Scholar
  14. 14.
    Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B., Berman, B.P., Maechling, P.: Scientific workflow applications on Amazon EC2. In: Proc. 5th IEEE International Conference on E-Science (Workshops), pp. 14–18. IEEE Computer Society Press (2009)Google Scholar
  15. 15.
    Buyya, R., Murshed, M.: GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource Management and Scheduling for Grid Computing. Concurrency and Computation: Practice and Experience 14, 1175–1220 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Walker, E.: Benchmarking Amazon EC2 for HP Scientific Computing. Login 33, 18–23 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jose Luis Vázquez-Poletti
    • 1
  • Gonzalo Barderas
    • 2
  • Ignacio M. Llorente
    • 1
  • Pilar Romero
    • 2
  1. 1.Departamento de Arquitectura de Computadores y Automática, Facultad de InformáticaUniversidad Complutense de MadridMadridSpain
  2. 2.Sección Departamental de Astronomía y Geodesia, Facultad de MatemáticasUniversidad Complutense de MadridMadridSpain

Personalised recommendations