Monte Carlo Simulations of Spin Systems on Multi-core Processors

  • Marco Guidetti
  • Andrea Maiorano
  • Filippo Mantovani
  • Marcello Pivanti
  • Sebastiano F. Schifano
  • Raffaele Tripiccione
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7133)


We optimize codes implementing Monte Carlo simulations of spin-glass systems for some multi-core CPU and GPU architectures. We consider both the binary Ising and floating-point Heisenberg spin-glass models in 3 dimensions. We provide performance figures for the Intel Nehalem quad-core and the IBM Cell/BE CPUs and the Nvidia Tesla C1060 GPU; for the binary model we also draw a comparison with the performance of dedicated computers, such as the Janus machine.


Monte Carlo Simulations Multi-core Architectures Spin-Glass Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marinari, E., Parisi, G., Ruiz Lorenzo, J.J.: Numerical Simulations of spin glass systems. In: Young, A.P. (ed.) Spin Glasses and Random Fields. World Scientific, Singapore (1998)Google Scholar
  2. 2.
    Condon, J.H., Ogielski, A.T.: Rev. Sci. Instruments 56, 1691–1696 (1985)Google Scholar
  3. 3.
    Ogielski, A.T.: Physics Review B 32, 7384–7398 (1985)Google Scholar
  4. 4.
    Cruz, A., et al.: Computer Physics Commmunication 133, 165–176 (2001)Google Scholar
  5. 5.
    Belletti, F., et al.: Simulating Spin Systems on JANUS. Computer Physics Commmunication 178, 208–216 (2008)CrossRefGoogle Scholar
  6. 6.
    Belletti, F., et al.: JANUS: an FPGA-based System for High Performance Scientific Computing. Computing in Science and Engineering 11, 48–58 (2009)CrossRefGoogle Scholar
  7. 7.
    Belletti, F., et al.: Simulating an Ising spin-glass for 0.1 seconds in Janus. Physical Review Letters 101, 157–201 (2008)CrossRefGoogle Scholar
  8. 8.
    Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press (2005)Google Scholar
  9. 9.
    Alvarez Banos, R., et al.: Static versus dynamic heterogeneities in the D=3 Edwards-Anderson-Ising spin glass. Physical Review Letters 105, 177–202 (2010)CrossRefGoogle Scholar
  10. 10.
    Belletti, F., Guidetti, M., Maiorano, A., Mantovani, F., Schifano, S.F., Tripiccione, R.: Monte Carlo Simulations of Spin Glass Systems on the Cell Broadband Engine. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp. 467–476. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Parisi, G., Rapuano, F.: Effects of the random number generator on computer simulations. Physics Letter B 157, 301–302 (1985)CrossRefGoogle Scholar
  12. 12.
    IBM Cell Broadband Engine Architecture, IBM web-site,
  13. 13.
    Inside Nehalem: Intel’s Future Processor and System, Real World Technologies web-site,
  14. 14.
    NVIDIA Corporation, NVIDIA CUDA C Programming Guide, NVIDIA web-site,
  15. 15.
    NVIDIA’s GT200: Inside a Parallel Processor, Real World Technologies web-site,
  16. 16.
    Inside Fermi: Nvidia’s HPC Push, Real World Technologies web-site,

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marco Guidetti
    • 1
  • Andrea Maiorano
    • 2
  • Filippo Mantovani
    • 3
    • 4
  • Marcello Pivanti
    • 1
  • Sebastiano F. Schifano
    • 5
  • Raffaele Tripiccione
    • 1
  1. 1.Dipartimento di FisicaUniversità di Ferrara and INFN Sezione di FerraraFerraraItaly
  2. 2.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly
  3. 3.Deutsches Elektronen-Synchrotron DESYZeuthenGermany
  4. 4.INFN Sezione di FerraraFerraraItaly
  5. 5.Dipartimento di MatematicaUniversità di Ferrara and INFN Sezione di FerraraFerraraItaly

Personalised recommendations