Advertisement

The Algorithm of Multiple Relatively Robust Representations for Multi-core Processors

  • Matthias Petschow
  • Paolo Bientinesi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7133)

Abstract

The algorithm of Multiple Relatively Robust Representations (MRRR or MR3) computes k eigenvalues and eigenvectors of a symmetric tridiagonal matrix in O(nk) arithmetic operations. Large problems can be effectively tackled with existing distributed-memory parallel implementations of MRRR; small and medium size problems can instead make use of LAPACK’s routine xSTEMR. However, xSTEMR is optimized for single-core CPUs, and does not take advantage of today’s multi-core and future many-core architectures. In this paper we discuss some of the issues and trade-offs arising in the design of MR3–SMP, an algorithm for multi-core CPUs and SMP systems. Experiments on application matrices indicate that MR3–SMP is both faster and obtains better speedups than all the tridiagonal eigensolvers included in LAPACK and Intel’s Math Kernel Library (MKL).

Keywords

MRRR algorithm tridiagonal eigensolver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilkinson, J.: The Calculation of the Eigenvectors of Codiagonal Matrices. Comp. J. 1(2), 90–96 (1958)zbMATHGoogle Scholar
  2. 2.
    Francis, J.: The QR Transform - A Unitary Analogue to the LR Transformation, Part I and II. The Comp. J. 4 (1961/1962)Google Scholar
  3. 3.
    Kublanovskaya, V.: On some Algorithms for the Solution of the Complete Eigenvalue Problem. Zh. Vych. Mat. 1, 555–572 (1961)Google Scholar
  4. 4.
    Cuppen, J.: A Divide and Conquer Method for the Symmetric Tridiagonal Eigenproblem. Numer. Math. 36, 177–195 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gu, M., Eisenstat, S.C.: A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem. SIAM J. Matrix Anal. Appl. 16(1), 172–191 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dhillon, I., Parlett, B.: Multiple Representations to Compute Orthogonal Eigenvectors of Symmetric Tridiagonal Matrices. Linear Algebra Appl. 387, 1–28 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Anderson, E., Bai, Z., Bishof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM (1999)Google Scholar
  8. 8.
    Demmel, J., Marques, O., Parlett, B., Vömel, C.: Performance and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers. SIAM J. Sci. Comp. 30, 1508–1526 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dongarra, J., Du Cruz, J., Duff, I., Hammarling, S.: A Set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Software 16, 1–17 (1990)CrossRefzbMATHGoogle Scholar
  10. 10.
    Demmel, J., Dhillon, I., Ren, H.: On the Correctness of some Bisection-like Parallel Eigenvalue Algorithms in Floating Point Arithmetic. Electron. Trans. Numer. Anal. 3, 116–149 (1995)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Parlett, B., Dhillon, I.: Relatively Robust Representations of Symmetric Tridiagonals. Linear Algebra Appl. 309, 121–151 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dhillon, I., Parlett, B.: Orthogonal Eigenvectors and Relative Gaps. SIAM J. Matrix Anal. Appl. 25, 858–899 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Parlett, B., Marques, O.: An Implementation of the DQDS Algorithm (Positive Case). Linear Algebra Appl. 309, 217–259 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Parlett, B.: The Symmetric Eigenvalue Problem. Prentice-Hall (1980)Google Scholar
  15. 15.
    Bientinesi, P., Dhillon, I., van de Geijn, R.: A Parallel Eigensolver for Dense Symmetric Matrices Based on Multiple Relatively Robust Representations. SIAM J. Sci. Comp. 21, 43–66 (2005)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Vömel, C.: ScaLAPACK’s MRRR Algorithm. ACM Trans. on Math. Software  37(1), 1:1–1:35 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dhillon, I., Parlett, B., Vömel, C.: The Design and Implementation of the MRRR Algorithm. ACM Trans. on Mathem. Software 32, 533–560 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Matthias Petschow
    • 1
  • Paolo Bientinesi
    • 1
  1. 1.RWTH Aachen UniversityGermany

Personalised recommendations