Skip to main content

Communication-Efficient Algorithms for Numerical Quantum Dynamics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7134))

Abstract

The time-dependent Schrödinger equation (TDSE) describes the quantum dynamical nature of molecular processes. However, numerical simulations of this linear, high-dimensional partial differential equation (PDE) rapidly become computationally very demanding and massive-scale parallel computing is needed to tackle many interesting problems. We present recent improvements to our MPI and OpenMP parallelized code framework HAParaNDA for solving high-dimensional PDE problems like the TDSE. By using communication-efficient high-order finite difference methods and Lanczos time propagators, we are able to accurately and efficiently solve TDSE problems in up to five dimensions on medium-sized clusters. We report numerical experiments which show that the solver scales well up to at least 4096 computing cores, also on computer systems with commodity communication networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gustafsson, M., Holmgren, S.: An implementation framework for solving high-dimensional PDEs on massively parallel computers. In: Pro. of ENUMATH 2009. Springer, Heidelberg (2010)

    Google Scholar 

  2. Kormann, K., Holmgren, S., Karlsson, H.: Accurate time propagation for the Schrödinger equation with an explicitly time-dependent Hamiltonian. J. Chem. Phys. 128, 184101 (2008)

    Article  Google Scholar 

  3. Leforestier, C., Bisseling, R.H., Cerjan, C., Feit, M.D., Friesner, R., Guldberg, A., Hammerich, A., Jolicard, G., Karrlein, W., Meyer, H.D., Lipkin, N., Roncero, O., Kosloff, R.: A Comparison of Different Propagation Schemes for the Time Dependent Schrödinger Equation. J. Comput. Phys. 94, 59–80 (1991)

    Article  MATH  Google Scholar 

  4. Holmgren, S., Peterson, C., Karlsson, H.O.: Time-marching methods for the time-dependent Schrödinger equation. In: Proc. of the International Conference on Computational and Mathematical Methods in Science and Engineering 2004, pp. 53–56. Uppsala University (2004)

    Google Scholar 

  5. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization and Performance Modeling of Stencil Computations on Modern Microprocessors. SIAM Rev. 51, 129–159 (2009)

    Article  MATH  Google Scholar 

  6. Kim, S., Chronopoulos, A.: A class of Lanczos-like algorithms implemented on parallel computers. Parallel Comput. 17 (1991)

    Google Scholar 

  7. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Compt. 19, 1552–1574 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Griffiths, D.J.: Introduction to Quantum Mechanics, 2nd edn. Pearson Education, Upper Saddle River (2005)

    Google Scholar 

  10. Latency Results from Pallas MPI Benchmarks, http://vmi.ncsa.uiuc.edu/performance/pmb_lt.php

  11. Mamidala, A.R., Liu, J., Panda, D.K.: Efficient Barrier and Allreduce on InfiniBand clusters using multicast and adaptive algorithms. In: 2004 IEEE International Conference on Cluster Computing, pp. 135–144. IEEE, New York (2004)

    Google Scholar 

  12. Kormann, K., Holmgren, S., Karlsson, H.O.: Global Error Control of the Time-Propagation for the Schrödinger Equation with a Time-Dependent Hamiltonian. Technical Report 2009-021, Uppsala University (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kristján Jónasson

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gustafsson, M., Kormann, K., Holmgren, S. (2012). Communication-Efficient Algorithms for Numerical Quantum Dynamics. In: Jónasson, K. (eds) Applied Parallel and Scientific Computing. PARA 2010. Lecture Notes in Computer Science, vol 7134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28145-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28145-7_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28144-0

  • Online ISBN: 978-3-642-28145-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics