Skip to main content

Efficient Reduction from Block Hessenberg Form to Hessenberg Form Using Shared Memory

  • Conference paper
Applied Parallel and Scientific Computing (PARA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7134))

Included in the following conference series:

  • 1777 Accesses

Abstract

A new cache-efficient algorithm for reduction from block Hessenberg form to Hessenberg form is presented and evaluated. The algorithm targets parallel computers with shared memory. One level of look-ahead in combination with a dynamic load-balancing scheme significantly reduces the idle time and allows the use of coarse-grained tasks. The coarse tasks lead to high-performance computations on each processor/core. Speedups close to 13 over the sequential unblocked algorithm have been observed on a dual quad-core machine using one thread per core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adlerborn, B., Dackland, K., Kågström, B.: Parallel Two-Stage Reduction of a Regular Matrix Pair to Hessenberg-Triangular Form. In: Sørvik, T., et al. (eds.) PARA 2000. LNCS, vol. 1947, pp. 92–102. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Bischof, C.H., Lang, B., Sun, X.: A framework for symmetric band reduction. ACM Trans. Math. Software 26(4), 581–601 (2000)

    Article  MathSciNet  Google Scholar 

  3. Dackland, K., Kågström, B.: Blocked algorithms and software for reduction of a regular matrix pair to generalized Schur form. ACM Trans. Math. Software 25(4), 425–454 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kågström, B., Kressner, D., Quintana-Orti, E., Quintana-Orti, G.: Blocked algorithms for the reduction to Hessenberg-triangular form revisited. BIT Numerical Mathematics 48(1), 563–584 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ltaief, H., Kurzak, J., Dongarra, J.J., Badia, R.M.: Scheduling two-sided transformations using tile algorithms on multicore architectures. Scientific Programming 18(1), 35–50 (2010)

    Article  Google Scholar 

  6. Mohanty, S.: I/O Efficient Algorithms for Matrix Computations. Ph.D. thesis, Indian Institute of Technology Guwahati (2009)

    Google Scholar 

  7. Murata, K., Horikoshi, K.: A new method for the tridiagonalization of the symmetric band matrix. Information Processing in Japan 15, 108–112 (1975)

    MathSciNet  MATH  Google Scholar 

  8. Rutishauser, H.: On Jacobi rotation patterns. In: Proc. Sympos. Appl. Math., vol. XV, pp. 219–239. Amer. Math. Soc., Providence (1963)

    Google Scholar 

  9. Tomov, S., Dongarra, J.J.: Accelerating the reduction to upper Hessenberg form through hybrid GPU-based computing. Tech. Rep. UT-CS-09-642, University of Tennessee Computer Science (May 2009); also as LAPACK Working Note 219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kristján Jónasson

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karlsson, L., Kågström, B. (2012). Efficient Reduction from Block Hessenberg Form to Hessenberg Form Using Shared Memory. In: Jónasson, K. (eds) Applied Parallel and Scientific Computing. PARA 2010. Lecture Notes in Computer Science, vol 7134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28145-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28145-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28144-0

  • Online ISBN: 978-3-642-28145-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics