Skip to main content

Fine Granularity Sparse QR Factorization for Multicore Based Systems

  • Conference paper
Applied Parallel and Scientific Computing (PARA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7134))

Included in the following conference series:

Abstract

The advent of multicore processors represents a disruptive event in the history of computer science as conventional parallel programming paradigms are proving incapable of fully exploiting their potential for concurrent computations. The need for different or new programming models clearly arises from recent studies which identify fine-granularity and dynamic execution as the keys to achieve high efficiency on multicore systems. This work presents an implementation of the sparse, multifrontal QR factorization capable of achieving high efficiency on multicore systems through using a fine-grained, dataflow parallel programming model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Koster, J.: MUMPS: A General Purpose Distributed Memory Sparse Solver. In: Sørevik, T., Manne, F., Moe, R., Gebremedhin, A.H. (eds.) PARA 2000. LNCS, vol. 1947, pp. 121–131. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Amestoy, P.R., Duff, I.S., Puglisi, C.: Multifrontal QR factorization in a multiprocessor environment. Int. Journal of Num. Linear Alg. and Appl. 3(4), 275–300 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björck, Å.: Numerical methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  4. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Comput. 35(1), 38–53 (2009)

    Article  MathSciNet  Google Scholar 

  5. Davis, T.A.: University of Florida sparse matrix collection (2002), http://www.cise.ufl.edu/research/sparse/matrices

  6. Davis, T.A.: Algorithm 832: UMFPACK V4.3 — an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis, T.A.: Multifrontal multithreaded rank-revealing sparse QR factorization. Accepted for Publication on ACM Transactions on Mathematical Software (2009)

    Google Scholar 

  8. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear systems. ACM Trans. Math. Softw. 9, 302–325 (1983)

    Article  MATH  Google Scholar 

  9. George, A., Liu, J.W.H.: Householder reflections versus Givens rotations in sparse orthogonal decomposition. Linear Algebra and its Applications 88/89, 223–238 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. George, J.A., Heath, M.T.: Solution of sparse linear least squares problems using Givens rotations. Linear Algebra and its Applications 34, 69–83 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hogg, J., Reid, J.K., Scott, J.A.: A DAG-based sparse Cholesky solver for multicore architectures. Technical Report RAL-TR-2009-004, Rutherford Appleton Laboratory (2009)

    Google Scholar 

  12. Liu, J.W.H.: On general row merging schemes for sparse Givens transformations. SIAM J. Sci. Stat. Comput. 7, 1190–1211 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM Journal on Matrix Analysis and Applications 11, 134–172 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Matstoms, P.: Parallel sparse QR factorization on shared memory architectures. Technical Report LiTH-MAT-R-1993-18, Department of Mathematics (1993)

    Google Scholar 

  15. Rice, J.R.: PARVEC workshop on very large least squares problems and supercomputers. Technical Report CSD-TR 464, Purdue University, IN (1983)

    Google Scholar 

  16. Schreiber, R., Van Loan, C.: A storage-efficient WY representation for products of Householder transformations. SIAM J. Sci. Stat. Comput. 10, 52–57 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Silc, J., Robic, B., Ungerer, T.: Asynchrony in parallel computing: From dataflow to multithreading. Journal of Parallel and Distributed Computing Practices 1, 1–33 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kristján Jónasson

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buttari, A. (2012). Fine Granularity Sparse QR Factorization for Multicore Based Systems. In: Jónasson, K. (eds) Applied Parallel and Scientific Computing. PARA 2010. Lecture Notes in Computer Science, vol 7134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28145-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28145-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28144-0

  • Online ISBN: 978-3-642-28145-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics