Skip to main content

Tight Bound for Farthest-Color Voronoi Diagrams of Line Segments

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7157))

Included in the following conference series:

Abstract

We establish a tight bound on the worst-case combinatorial complexity of the farthest-color Voronoi diagram of line segments in the plane. More precisely, given k sets of total n line segments, the combinatorial complexity of the farthest-color Voronoi diagram is shown to be Θ(kn + h) in the worst case, under any L p metric with 1 ≤ p ≤ ∞, where h is the number of crossings between the n line segments. We also show that the diagram can be computed in optimal O((kn + h)logn) time under the L 1 or L  ∞  metric, or in O((kn + h) (α(k) logk + logn)) time under the L p metric for any 1 < p < ∞, where α(·) denotes the inverse Ackermann function.

This research was supported by National Research Foundation of Korea(KRF) grant funded by the Korea government(MEST) (No.2011-0005512).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: The farthest color Voronoi diagram and related problems. Technical Report 002, Rheinische Friedrich–Wilhelms–Universität Bonn (2006)

    Google Scholar 

  2. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry. Elsevier (2000)

    Google Scholar 

  3. Bentley, J.L., Ottman, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. C-28, 643–647 (1979)

    Article  MATH  Google Scholar 

  4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computationsl Geometry: Alogorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  5. Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments in the plane. J. ACM 39, 1–54 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na, H.S.: Farthest-polygon Voronoi diagrams. Comput. Geom.: Theory and Appl. 44(4), 234–247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hershberger, J.: Finding the upper envelope of n line segments in O(nlogn) time. Inform. Proc. Lett. 33, 169–174 (1989)

    Article  MATH  Google Scholar 

  8. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom. 9, 267–291 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  10. Lee, C., Shin, D., Bae, S.W., Choi, S.: Best and worst-case coverage problems for arbitrary paths in wireless sensor networks. In: Proc. IEEE 7th Int. Conf. Mobile Adhoc and Sensor Systems (MASS 2010), pp. 127–136 (2010)

    Google Scholar 

  11. Lee, D.T.: Two-dimensional Voronoi diagrams in the L p -metric. J. ACM 27, 604–618 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. Internat. J. Comput. Geom. Appl. 11(6), 583–616 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. John Wiley and Sons, New York (2000)

    Book  MATH  Google Scholar 

  14. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)

    Book  MATH  Google Scholar 

  15. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  16. Yap, C.K.: An O(n logn) algorithm for the Voronoi diagram of a set of simple curve segments. Discrete Comput. Geom. 2(1), 365–393 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bae, S.W. (2012). Tight Bound for Farthest-Color Voronoi Diagrams of Line Segments. In: Rahman, M.S., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2012. Lecture Notes in Computer Science, vol 7157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28076-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28076-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28075-7

  • Online ISBN: 978-3-642-28076-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics