Advertisement

GENote v.β: A Web Tool Prototype for Annotation of Unfinished Sequences in Non-model Eukaryotes

  • Noé Fernández-Pozo
  • Darío Guerrero-Fernández
  • Rocío Bautista
  • Josefa Gómez-Maldonado
  • Concepción Avila
  • Francisco M. Cánovas
  • M. Gonzalo Claros
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6620)

Abstract

De novo identification of genes in newly-sequenced eukaryotic genomes is based on sensors, which are not available in non-model organisms. Many annotation tools have been developed and most of them require sequence training, computer skills and accessibility to sufficient computational power. The main need of non-model organisms is finding genes, transposable elements, repetitions, etc., in reliable assemblies. GENote v.β is intended to cope with these aspects as a web tool for researchers without bioinformatics skills. It facilitates the annotation of new, unfinished sequences with descriptions, GO terms, EC numbers and KEEG pathways. It currently localises genes and transposons, which enable the sorting of contigs or scaffolds from a BAC clone, and reveals some putative assembly inconsistencies. Results are provided in GFF3 format and in tab-delimited text readable in viewers; a summary of findings is provided also as a PNG file.

Keywords

Annotation web tool unfinished sequence gene finding non-model species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brent, M.R.: Genome annotation past, present, and future: how to define an orf at each locus. Genome Res. 15(12), 1777–1786 (2005)CrossRefGoogle Scholar
  2. 2.
    Brent, M.R.: Steady progress and recent breakthroughs in the accuracy of automated genome annotation. Nat. Rev. Genet. 9(1), 62–73 (2008)CrossRefGoogle Scholar
  3. 3.
    Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L.: Blast+: architecture and applications. BMC Bioinformatics 10, 421 (2009)CrossRefGoogle Scholar
  4. 4.
    Cantarel, B.L., Korf, I., Robb, S.M.C., Parra, G., Ross, E., Moore, B., Holt, C., Sánchez Alvarado, A., Yandell, M.: Maker: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18(1), 188–196 (2008)CrossRefGoogle Scholar
  5. 5.
    Götz, S., García-Gómez, J.M., Terol, J., Williams, T.D., Nagaraj, S.H., Nueda, M.J., Robles, M., Talón, M., Dopazo, J., Conesa, A.: High-throughput functional annotation and data mining with the blast2go suite. Nucleic Acids Res. 36(10), 3420–3435 (2008)CrossRefGoogle Scholar
  6. 6.
    Hamberger, B., Hall, D., Yuen, M., Oddy, C., Hamberger, B., Keeling, C.I., Ritland, C., Ritland, K., Bohlmann, J.: Targeted isolation, sequence assembly and characterization of two white spruce (picea glauca) bac clones for terpenoid synthase and cytochrome p450 genes involved in conifer defence reveal insights into a conifer genome. BMC Plant Biol. 9, 106 (2009)CrossRefGoogle Scholar
  7. 7.
    Harrow, J., Nagy, A., Reymond, A., Alioto, T., Patthy, L., Antonarakis, S.E., Guigó, R.: Identifying protein-coding genes in genomic sequences. Genome Biol. 10(1), 201 (2009)CrossRefGoogle Scholar
  8. 8.
    Jones, C.E., Brown, A.L., Baumann, U.: Estimating the annotation error rate of curated go database sequence annotations. BMC Bioinformatics 8, 170 (2007)CrossRefGoogle Scholar
  9. 9.
    Korf, I.: Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004)CrossRefGoogle Scholar
  10. 10.
    Koski, L.B., Gray, M.W., Lang, B.F., Burger, G.: Autofact: an automatic functional annotation and classification tool. BMC Bioinformatics 6, 151 (2005)CrossRefGoogle Scholar
  11. 11.
    Kovach, A., Wegrzyn, J.L., Parra, G., Holt, C., Bruening, G.E., Loopstra, C.A., Hartigan, J., Yandell, M., Langley, C.H., Korf, I., Neale, D.B.: The pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11, 420 (2010)CrossRefGoogle Scholar
  12. 12.
    Salamov, A.A., Solovyev, V.V.: Ab initio gene finding in drosophila genomic dna. Genome Res. 10(4), 516–522 (2000)CrossRefGoogle Scholar
  13. 13.
    Schweikert, G., Behr, J., Zien, A., Zeller, G., Ong, C.S., Sonnenburg, S., Rätsch, G.: mgene.web: a web service for accurate computational gene finding. Nucleic Acids Res. 37(Web Server issue), W312–W316 (2009)Google Scholar
  14. 14.
    Steinbiss, S., Gremme, G., Schärfer, C., Mader, M., Kurtz, S.: Annotationsketch: a genome annotation drawing library. Bioinformatics 25(4), 533–534 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Noé Fernández-Pozo
    • 1
  • Darío Guerrero-Fernández
    • 2
  • Rocío Bautista
    • 2
  • Josefa Gómez-Maldonado
    • 1
  • Concepción Avila
    • 1
  • Francisco M. Cánovas
    • 1
  • M. Gonzalo Claros
    • 1
    • 2
  1. 1.Departamento de Biología Molecular y BioquímicaUniversidad de MálagaMálagaSpain
  2. 2.Plataforma Andaluza de BioinformáticaUniversidad de MálagaMálagaSpain

Personalised recommendations