Advertisement

Multivariate Methods for the Integration and Visualization of Omics Data

  • Alex Sánchez
  • José Fernández-Real
  • Esteban Vegas
  • Francesc Carmona
  • Jacques Amar
  • Remy Burcelin
  • Matteo Serino
  • Francisco Tinahones
  • M. Carmen Ruíz de Villa
  • Antonio Minãrro
  • Ferran Reverter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6620)

Abstract

As the developments in high throughput technologies have become more common and accessible it is becoming usual to take several distinct simultaneous approaches to study the same problem. In practice, this means that data of different types (expression, proteins, metabolites...) may be available for the same study, highlighting the need for methods and tools to analyze them in a combined way. In recent years there have been developed many methods that allow for the integrated analysis of different types of data. Corresponding to a certain tradition in bioinformatics many methodologies are rooted in machine learning such as bayesian networks, support vector machines or graph-based methods. In contrast with the high number of applications from these fields, another that seems to have contributed less to “omic” data integration is multivariate statistics, which has however a long tradition in being used to combine and visualize multidimensional data. In this work, we discuss the application of multivariate statistical approaches to integrate bio-molecular information by using multiple factorial analysis. The techniques are applied to a real unpublished data set consisting of three different data types: clinical variables, expression microarrays and DNA Gel Electrophoretic bands. We show how these statistical techniques can be used to perform reduction dimension and then visualize data of one type useful to explain those from other types. Whereas this is more or less straightforward when we deal with two types of data it turns to be more complicated when the goal is to visualize simultaneously more than two types. Comparison between the approaches shows that the information they provide is complementary suggesting their combined use yields more information than simply using one of them.

Keywords

Data Integration Omic Data Visualization Multiple Factor Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlin, J., Normand, T.: Tutorial in biostatistics. meta-analysis: formulating, evaluating, combining, and reporting. Stat. Med. 19(5), 753–759 (2000)CrossRefGoogle Scholar
  2. 2.
    de Tayrac, M., Lê, S., Aubry, M., Mosser, J., Husson, F.: Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach. BMC Genomics 10, 32–32 (2009)CrossRefGoogle Scholar
  3. 3.
    Dumas, M., Canlet, C., Debrauwer, L., Martin, P., Paris, A.: Selection of biomarkers by a multivariate statistical processing of composite metabonomic data sets using multiple factor analysis. J. Proteome Res. 4, 1485–1492 (2005)CrossRefGoogle Scholar
  4. 4.
    Escofier, B., Pages, J.: Analyses factorielles simples et multiples. [Multiple and Simple Factor Analysis], 3rd edn. Dunod, Paris (1998)Google Scholar
  5. 5.
    Escofier, E., Pages, J.: Multiple factor analysis (afmult package). Computational Statistics & Data Analysis 18, 121–140 (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Falciani, F.: Microarray technology through applications. Taylor & Francis, New York (2007)Google Scholar
  7. 7.
    Gafan, G.P., Lucas, V.S., Roberts, G.J., Petrie, A., Wilson, M., Spratt, D.A.: Statistical analyses of complex denaturing gradient gel electrophoresis profiles. J. Clin. Microbiol. 43, 3971–3978 (2005)CrossRefGoogle Scholar
  8. 8.
    Goble, C., Stevens, R.: State of the nation in data integration for bioinformatics. Journal of Biomedical Informatics 41(5), 687–693 (2008), http://dx.doi.org/10.1016/j.jbi.2008.01.008 CrossRefGoogle Scholar
  9. 9.
    Hamid, J., Hu, P., Roslin, V., Greenwood, C., Beyene, J.: Data integration in genetics and genomics: Methods and challenges. Human Genomics and Proteomics (2009)Google Scholar
  10. 10.
    Huopaniemi, I., Suvitaival, T., Nikkil, J., Orei, M., Kaski, S.: Multivariate multi-way analysis of multi-source data. Bioinformatics 26(12), i391–i398 (2010), http://bioinformatics.oxfordjournals.org/content/26/12/i391.abstract CrossRefGoogle Scholar
  11. 11.
    Hao, K., Schadt, E.E., Storey, J.D.: Calibrating the performance of snp arrays for whole-genome association studies. PLoS Genet. 4(6), e1000109 (2008)CrossRefGoogle Scholar
  12. 12.
    Lě, S., Josse, J., Husson, F.: Factominer: An r package for multivariate analysis. Journal of Statistical Software 25(1), 1–18 (2008), http://www.jstatsoft.org/v25/i01 Google Scholar
  13. 13.
    Nguyen, D.V.: DNA microarray experiments: Biological and technological aspects. Biometrics 58(4), 701–717 (2002), http://www.blackwell-synergy.com/doi/abs/10.1111/j.0006-341X.2002.00701.x MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rhodes, D.R., Barrette, T.R., Rubin, M.A., Ghosh, D., Chinnaiyan, A.M.: Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res. 62(15), 4427–4433 (2002)Google Scholar
  15. 15.
    Ricart, W., Fernández-Real, J.M.: Insulin resistance as a mechanism of adaptation during human evolution. Endocrinol Nutr. 57, 381–390 (2010)CrossRefGoogle Scholar
  16. 16.
    Van Deun, K., Smilde, A., van der Werf, M., Kiers, H., Van Mechelen, I.: A structured overview of simultaneous component based data integration. BMC Bioinformatics 10(1), 246 (2009), http://www.biomedcentral.com/1471-2105/10/246 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alex Sánchez
    • 1
  • José Fernández-Real
    • 2
  • Esteban Vegas
    • 1
  • Francesc Carmona
    • 1
  • Jacques Amar
    • 3
  • Remy Burcelin
    • 3
  • Matteo Serino
    • 3
  • Francisco Tinahones
    • 4
  • M. Carmen Ruíz de Villa
    • 1
  • Antonio Minãrro
    • 1
  • Ferran Reverter
    • 1
  1. 1.Departament d’EstadísticaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institut d’Investigació Biomèdica de GironaGironaSpain
  3. 3.Institut de Medecine Moleculaire de RangueilToulouseFrance
  4. 4.Hospital Clínico Interuniversitario Virgen de VictoriaMalagaSpain

Personalised recommendations