Skip to main content

Piezoelectric Phenomena in Biological Tissues

  • Chapter

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Biological structures, at different organization levels (macromolecules, tissues, etc.) present a typical spiral shape. Spirals do not have a center of symmetry and hence almost all biological matter possesses piezoelectricity properties. Thus, the possibility to convert mechanical signals into electric ones, and viceversa, is not only ascribed to minerals or ceramics. In this chapter, after reminding essential elements on piezoelectricity and its connection with material structure, the piezoelectric properties of two typical macromolecular components, cellulose (for plants) and collagen (for animals) are introduced, and their role in biological tissues is described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Komarneni, S., Roy, R., Li, Q.H.: Microwave hydrothermal synthesis of ceramic powders. Mat. Res. Bull. 27(12), 1392–1405 (1992)

    Article  Google Scholar 

  2. Forsbergh Jr., P.W.: Piezoelectricity, electrostriction and ferroelectricity. In: Von Flügge, S. (ed.) Handbuch der Physik, herausgegeben Band XVII Dielektrika, Springer, Heidelberg (1956)

    Google Scholar 

  3. Cady, W.G.: Piezoelectricity, an introduction to the theory and applications of electromechanical phenomena in crystals, vol. 2. Dover Publications, New York (1964)

    Google Scholar 

  4. Friedman, D.: Determination of spiral symmetry in plants and polymers. In: Hargittai, I., Pickover, C.A. (eds.) Spiral Symmetry, pp. 251–274. World Scientific Publishing Co., Singapore (1992)

    Google Scholar 

  5. Braun, A.: Vergleichende Untersuchung über die Ordnung der Schuppen an den Tannenzapfen als Einleitung zur Untersuchung der Blattstellungen überhaupt. Nova Acta Physico-Medica Academiae Caesareae Leopoldino-Carolinae Naturae Curiosorum (Verhandlung der Kaiserlichen Leopoldinsch-Carolinschen Akademie der Naturforschung) 15, 195–402 (1831)

    Google Scholar 

  6. Schimper, C.F.: Beschreibung des Symphytum Zeyheri und seiner zwei deutschen Verwandten der S. bulbosum Schimper und S. tuberosum Jacqu. Magazin für Pharmacie (hgb. Ph. L. Geiger) 29, 1–92 (1831)

    Google Scholar 

  7. Bravais, L., Bravais, A.: Essai sur la disposition des feuilles curvisériées. Annales des Sciences Naturelles Botanique 7, 42–110(1837); Essai sur la disposition symétrique des inflorescences, ibid 7, 8, 193–221, 291–348, 11–42

    Google Scholar 

  8. Schwendener, S.: Mechanische Theorie der Blattstellungen, Engelmann, Leipzig (1878)

    Google Scholar 

  9. Schwendener, S.: Zur Theorie der Blattstellungen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin II, pp. S.741–S.773 (1883)

    Google Scholar 

  10. Wulff, G.W.: Simmetriia i ee proiavleniia v prirode (Symmetry and its manifestations in the nature, in Russian), Lektsii chitannye v 1907g. Moskovskoe obshchestvo Narodnykh Universitetov, Tip. T-va I. D. Sytina, Moskva (1908)

    Google Scholar 

  11. Lewis, F.T.: The effect of cell division on the shape and size of hexagonal cells. Anatomical Records 33, 331–355 (1926)

    Article  Google Scholar 

  12. Lewis, F.T.: The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of cucumis. Anat. Rec. 38, 341–376 (1928)

    Article  Google Scholar 

  13. Lewis, F.T.: A comparison between the mosaic of polygons in a film of artificial emulsion and the pattern of simple epithelium in surface view (cucumber epidermis and human amnion). Anat. Rec. L, 235–265 (1931)

    Google Scholar 

  14. Zagórska-Marek, B.: Magnolia flower - the living crystal. Magnolia. The Journal of the Magnolia Society International 89, 11–21 (2011)

    Google Scholar 

  15. Wöhlisch, E.: Untersuchungen über elastische, thermodynamische, magnetische und elektrische Eigenschaften tierischer Gewebe. Verhandlungen der physikalisch - medizinischen Gesellschaft in Würzburg (Verh. phys.– med. Ges. Würzburg) N.F. 51, 53–64 (1926)

    Google Scholar 

  16. Born, M., Wolf, E.: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th edn. Cambridge University Press (1999)

    Google Scholar 

  17. Kittel, C.: Introduction to solid state physics, 8th edn. (2004)

    Google Scholar 

  18. Aspnes, D.E.: Local-field effects and effective-medium theory. American Journal of Physics 50(8), 704–708 (1982)

    Article  Google Scholar 

  19. Sadoc, J.F., Rivier, N.: Boerdijk-Coxeter helix and biological helices. The European Physical Journal B 12(2), 309–318 (1999)

    Article  MathSciNet  Google Scholar 

  20. Lord, E.A.: Helical structures: the geometry of protein helices and nanotubes. Structural Chemistry 13(3-4), 305–314 (2002)

    Article  Google Scholar 

  21. Landau, L.D., Lifshitz, E.M.: Electrodynamics of continuous media, Course of Theoretical Physics, vol. 8. Pergamon Press, Oxford (1960)

    Google Scholar 

  22. Shubnikov, A.V.: Piezoelectric textures AN SSSR, Moskva (1946) (in Russian)

    Google Scholar 

  23. Bazhenov, V.A., Konstantinova, V.P.: Piezoelectric properties of wood. Doklady Akademii Nauk SSSR 71(2), 283–286 (1950)

    Google Scholar 

  24. Fukada, E.: Piezoelectricity of wood. Journal of the Physical Society of Japan 10(2), 149 (1955)

    Article  Google Scholar 

  25. Zheludev, I.S.: Piezoelectricity in textured media. In: Zheludev, I.S. (ed.) Solid State Physics, pp. 315–360. Academic Press, New York (1974)

    Google Scholar 

  26. Williams, W.S.: Piezoelectric effects in biological materials. In: Taylor, G.W., Gagnepain, J.J., Meeker, T.R., Nakamura, T., Shuvalov, L.A. (eds.) Piezoelectricity, pp. 213–234. Gordon and Breach Science Publishers, CH-1400 Yverdon, Switzerland (1985)

    Google Scholar 

  27. Wojnar, R.: Bone and cartilage – its structure and physical properties. In: Öchsner, A., Ahmed, W. (eds.) Biomechanics of Hard Tissues: Modeling, Testing, and Materials, pp. 1–75. Wiley-VCH Verlag GmbH&Co, KGaA, Weinheim (2010)

    Chapter  Google Scholar 

  28. Pasteris, J.D., Wopenka, B., Valsami-Jones, E.: Bone and tooth mineralization: Why apatite? Elements 4, 97–104 (2008)

    Article  Google Scholar 

  29. Gebhardt, W.: Über funktionell wichtige Anordnungsweisen der feineren und gröberen Bauelemente des Wirbelthierknochens.II. Spezieller Teil. Arch. Entwickl. Mech (Roux’s Arch. Dev. Biol.) 20, 187–322 (1901)

    Google Scholar 

  30. Fukada, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Japan 12, 121–128 (1957)

    Google Scholar 

  31. Fukada, E., Yasuda, I.: Piezoelectric effects in collagen. J. appl. Phys. 3, 117 (1964)

    Article  Google Scholar 

  32. Fukada, E.: Piezoelectricity of biopolymers. Biorheology 32(6), 593–609 (1995)

    Article  Google Scholar 

  33. Kim, J.-H., Yun, S., Kim, J.-H., Kim, J.: Fabrication of piezoelectric cellulose paper and audio application. Journal of Bionic Engineering 6, 18–21 (2009)

    Article  Google Scholar 

  34. Kim, J., Yun, S., Mahadeva, S.K., Yun, K., Yang, S.Y., Maniruzzaman, M.: Paper actuators made with cellulose and hybrid materials. Sensors 10(3), 1473–1485 (2010)

    Article  Google Scholar 

  35. Reinish, G.B., Nowick, A.S.: Piezoelectric properties of bone as functions of moisture content. Nature 253, 626–627 (1975)

    Article  Google Scholar 

  36. Bur, A.J.: Measurements of the dynamic piezoelectric properties of bone as a function of temperature and humidity. Journal of Biomechanics 9(8), 495–507 (1976)

    Article  Google Scholar 

  37. Telega, J.J., Wojnar, R.: Piezoelectric effects in biological tissues. Journal of Theoretical and Applied Mechanics 40(3), 723–769 (2002)

    Google Scholar 

  38. Minary-Jolandan, M., Yu, M.-F.: Subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. ACS Nano (American Chemisal Society) 3(7), 1859–1863 (2009)

    Google Scholar 

  39. Minary-Jolandan, M., Yu, M.-F.: Shear piezoelectricity in bone at the nanoscale. Appl. Phys. Lett. 97, 153127 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Wojnar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Wojnar, R. (2012). Piezoelectric Phenomena in Biological Tissues. In: Ciofani, G., Menciassi, A. (eds) Piezoelectric Nanomaterials for Biomedical Applications. Nanomedicine and Nanotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28044-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28044-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28043-6

  • Online ISBN: 978-3-642-28044-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics