Skip to main content

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Since fabrication, characterization, and integration into practical devices of nanostructures is unavoidably complex and expensive, accurate models are crucial for designing high performance nanostructures-based devices. Moreover, piezoelectric nanotransducers may have several crucial advantages when compared with the correspondent macro- or micro-devices. For these reasons, after reviewing both piezoelectric constitutive equations and equivalent circuits for piezoelectric transducers, we show how these tools can be applied to analysis and design of practical piezoelectric nanodevices. As an important example, we choose piezoelectric nanogenerators; however, by analyzing this type of devices, we discuss the key general concepts and challenges for modeling piezoelectric nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Senturia, S.D.: Microsystem Design. Springer, Heidelberg (2000)

    Google Scholar 

  2. Falconi, C., Martinelli, E., Di Natale, C., D’Amico, A., Maloberti, F., Malcovati, P., Baschirotto, A., Stornelli, V., Ferri, G.: Electronic interfaces. Sensors and Actuators B 121, 295–329 (2007)

    Google Scholar 

  3. Falconi, C., Mantini, G., D’Amico, A., Wang, Z.L.: Studying piezoelectric nanowires and nanowalls for energy harvesting. Sensors and Actuators B 139, 511–519 (2009)

    Google Scholar 

  4. Falconi, C., D’Amico, A., Wang, Z.L.: Wireless Joule Nanoheaters. Sensors and Actuators B 127, 54–62 (2007)

    Google Scholar 

  5. Hu, Y., Goa, Y., Singameni, S., Tsukruk, V.V., Wang, Z.L.: Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt. NanoLetters 9(7), 2661–2665 (2009)

    Article  Google Scholar 

  6. Royer, D., Dieulesaint, E.: Elastic Waves in Solids I, vol. 1. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  7. Auld, B.A.: Acoustic Fields and Waves in Solids, vol. 1-2. John Wiley & Sons, New York (1973)

    Google Scholar 

  8. Newnham, R.E.: Properties of Materials. Oxford University Press, New York (2005)

    Google Scholar 

  9. Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998)

    Article  Google Scholar 

  10. Haertling, G.H.: Ferroelectric Ceramics: History and Technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  11. Waanders, J.W.: Piezoelectric ceramics, Ehindhoven, Philips Components (1991)

    Google Scholar 

  12. Tilmans, H.A.C.: Equivalent circuit representation of electromechanical transducers: I Lumped-parameter systems. J. Micromech. Microeng. 6, 157–176 (1996)

    Article  Google Scholar 

  13. Mason, W.P.: Electromechanical Transducers and Wave Filters. Van Nostrand Company, New York (1948)

    Google Scholar 

  14. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)

    Article  Google Scholar 

  15. Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D., Taroni, A.: Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sensors and Actuators A 142, 329–335 (2008)

    Article  Google Scholar 

  16. Williams, C.B., Yates, R.B.: Analysis of a micro-electric generator for microsystems. Sensors and Actuators A 52, 8–11 (1996)

    Article  Google Scholar 

  17. D’hulst, R., Driesen, J.: Power processing circuits for vibration-based energy harvesters. In: Proc. of IEEE Power Electronics Specialists Conference, pp. 2556–2562 (2008)

    Google Scholar 

  18. Wang, Z.L., Song, J.: - Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  Google Scholar 

  19. Wang, Z.L.: ZnO nanowire and nanobelt platform for nanotechnology. Mat. Sc. Eng. R 64, 33–71 (2009)

    Article  Google Scholar 

  20. Lu, M.P., Song, J., Lu, M.Y., Chen, M.T., Gao, Y., Chen, L.J., Wang, Z.L.: Piezoelectric nanogenerator using p-type ZnO nanowire array. Nanoletters 9(3), 1223–1227 (2009)

    Article  Google Scholar 

  21. Gao, Y., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerators and nanopiezotronics. NanoLetters 7(8) (2007)

    Google Scholar 

  22. Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self-powered nanowire device. Nat. Nanotech. 5, 366–373 (2010)

    Article  Google Scholar 

  23. Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotech. 4, 34–39 (2008)

    Article  Google Scholar 

  24. Sun, C., Shi, J., Wang, X.: Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J. Appl. Phys. 108, 34309 (2010)

    Article  Google Scholar 

  25. Gao, Y., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nanoletters 9(3) (2009)

    Google Scholar 

  26. Mantini, G., Gao, Y., D’Amico, A., Falconi, C., Wang, Z.L.: Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire. Nano Res. 2, 624–629 (2009)

    Article  Google Scholar 

  27. Romano, G., Mantini, G., Di Carlo, A., D’Amico, A., Falconi, C., Wang, Z.L.: Piezoelectric potential in vertically aligned nanowire for high output nanogenerators. Submitted to Nanotechnology (2011)

    Google Scholar 

  28. Romano, G., Mantini, G., Di Carlo, A., D’Amico, A., Falconi, C., Wang, Z.L.: Influence of carriers concentration of piezoelectric potential in vertically compressed ZnO nanowires. In: AISEM (2011)

    Google Scholar 

  29. Chen, J., Lee, J.D.: Atomic formulation of nano-piezo-electricity in barium titanate. Nanoscience and Nanotechnology Letters 2, 26–29 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Falconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Falconi, C., Mantini, G., D’Amico, A., Ferrari, V. (2012). Modeling of Piezoelectric Nanodevices. In: Ciofani, G., Menciassi, A. (eds) Piezoelectric Nanomaterials for Biomedical Applications. Nanomedicine and Nanotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28044-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28044-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28043-6

  • Online ISBN: 978-3-642-28044-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics