Skip to main content

Mechanical and Electromechanical Characterization of One-Dimensional Piezoelectric Nanomaterials

  • Chapter
Piezoelectric Nanomaterials for Biomedical Applications

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

In this chapter nanoscale characterization techniques for piezoelectric materials are discussed, with a focus on nanomechanical and electromechanical methods for one-dimensional nanomaterials. One-dimensional nanostructures have been the focus of recent nanoscale research due to their potential application in future nanoelectronics and nanodevices. However, their small size and special geometry impose a challenge especially from experimental point of view and renders their characterization nontrivial. In this chapter, the common methods of nanomechanical and electromechanical characterization of these nanostructures are discussed, with an emphasis on piezoelectric one-dimensional materials. Advantages and limitations of each method are discussed and the relevant literature is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuchibhatla, S.V.N.T., et al.: One dimensional nanostructured materials. Progress in Materials Science 52 (2007)

    Google Scholar 

  2. Lu, J.G., Chang, P., Fan, Z.: Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Materials Science and Engineering R 52, 49–91 (2006)

    Article  Google Scholar 

  3. Zhu, Y., Ke, C., Espinosa, H.D.: Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures. Experimental Mechanics 47, 7–24 (2007)

    Article  Google Scholar 

  4. Yu, M., et al.: Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology 10, 244–252 (1999)

    Article  Google Scholar 

  5. Yu, M.-F., et al.: Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 287, 637–640 (2000)

    Article  Google Scholar 

  6. Yu, M.-F., et al.: Tensile Loading of Ropes of SingleWall Carbon Nanotubes and their Mechanical Properties. Physical Review Letters 84, 5552–5555 (2000)

    Article  Google Scholar 

  7. Zhu, Y., Espinosa, H.D.: An electromechanical material testing system for in situ electron microscopy and applications. Proceedings of the National Academy of Sciences of USA 102, 14503–14508 (2005)

    Article  Google Scholar 

  8. Peng, B., et al.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology 3, 626–631 (2008)

    Article  Google Scholar 

  9. Shen, Z.L., et al.: Stress-Strain Experiments on Individual Collagen Fibrils. Biophysical Journal 95, 3956–3963 (2008)

    Article  Google Scholar 

  10. Agrawal, R., et al.: Elasticity Size Effects in ZnO Nanowires-A Combined Experimental-Computational Approach. Nano Letters 8, 3668–3674 (2008)

    Article  Google Scholar 

  11. Agrawal, R., Peng, B., Espinosa, H.D.: Experimental-Computational Investigation of ZnO nanowires Strength and Fracture. Nano Letters 9, 4177–4183 (2009)

    Article  Google Scholar 

  12. Desai, A.V., Haque, M.A.: Mechanical properties of ZnO nanowires. Sensors and Actuators A 134, 169–176 (2007)

    Article  Google Scholar 

  13. Xu, F., et al.: Mechanical Properties of ZnO Nanowires Under Different Loading Modes. Nano Research 3, 271–280 (2010)

    Article  Google Scholar 

  14. Hoffmann, S., et al.: Fracture strength and Young’s modulus of ZnO nanowires. Nanotechnology 18, 205503 (2007)

    Article  Google Scholar 

  15. Xu, S., Shi, Y., Kim, S.-G.: Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology 17, 4497–4501 (2006)

    Article  Google Scholar 

  16. Heidelberg, A., et al.: A Generalized Description of the Elastic Properties of Nanowires. Nano Letters 6, 1101–1106 (2006)

    Article  Google Scholar 

  17. Walters, D.A., et al.: Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physics Letters 74, 3803–3805 (1999)

    Article  Google Scholar 

  18. Salvetat, J.-P., et al.: Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes. Physical Review Letters 82, 944–947 (1999)

    Article  Google Scholar 

  19. Kis, A., et al.: Nanomechanics of Microtubules. Physical Review Letters 89, 248101-248104 (2002)

    Google Scholar 

  20. Gere, J.M., Timoshenko, S.P.: Mechanics of Materials. In: Cengage Learning, 7th edn., Toronto, Canada (2009)

    Google Scholar 

  21. Yang, L., et al.: Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils. Biophysical Journal 94, 2204–2211 (2008)

    Article  Google Scholar 

  22. Wen, B., Sader, J.E., Boland, J.J.: Mechanical Properties of ZnO Nanowires. Physical Review Letters 101, 175502–175504 (2008)

    Article  Google Scholar 

  23. Ni, H., et al.: Elastic modulus of single-crystal GaN nanowires. Journal of Materials Research 21, 2882–2887 (2006)

    Article  Google Scholar 

  24. Ni, H., Li, X.: Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 17, 3591–3597 (2006)

    Article  Google Scholar 

  25. Heim, A.J., Koob, T.J., Matthews, W.G.: Low Strain Nanomechanics of Collagen Fibrils. Biomacromolecules 8, 3298–3301 (2007)

    Article  Google Scholar 

  26. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277, 1971–(1975)

    Article  Google Scholar 

  27. Song, J., et al.: Elastic Property of Vertically Aligned Nanowires. Nano Letters 5, 1954–1958 (2005)

    Article  Google Scholar 

  28. Chen, C.Q., Zhua, J.: Bending strength and flexibility of ZnO nanowires. Applied Physics Letters 90, 043105 (2007)

    Google Scholar 

  29. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  30. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research 7, 1564–1583 (1992)

    Article  Google Scholar 

  31. Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Scinece 3, 47–57 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tan, E.P.S., Lim, C.T.: Nanoindentation study of nanofibers. Applied Physics Letters 87, 123106 (2005)

    Article  Google Scholar 

  33. Minary-Jolandan, M., Yu, M.-F.: Reversible radial deformation up to the complete flattening of carbon nanotubes in nanoindentation. Journal of Applied Physics 103, 073516-5 (2008)

    Google Scholar 

  34. Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 19, 3–20 (2004)

    Article  Google Scholar 

  35. Yu, M.-F., Kowalewski, T., Ruoff, R.S.: Investigation of the Radial Deformability of Individual Carbon Nanotubes under Controlled Indentation Force. Physical Review Letters 85, 1456–1459 (2000)

    Article  Google Scholar 

  36. Li, X., et al.: Nanoindentation of Silver Nanowires. Nano Letters 3, 1495–1498 (2003)

    Article  Google Scholar 

  37. Minary-Jolandan, M., Yu, M.-F.: Nanomechanical Heterogeneity in the Gap and Overlap Regions of Type I Collagen Fibrils with Implications for Bone Heterogeneity. Biomacromolecules 10, 2565–2570 (2009)

    Article  Google Scholar 

  38. Stan, G., et al.: Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires. Nano Letters 7, 3691–3697 (2007)

    Article  Google Scholar 

  39. Boresi, A.P.: Advanced mechanics of materials. John Wiley & Sons, New York (1993)

    Google Scholar 

  40. Feng, G., et al.: A study of the mechanical properties of nanowires using nanoindentation. Journal of Applied Physics 99, 74304 (2006)

    Article  Google Scholar 

  41. Lucas, M., et al.: Aspect Ratio Dependence of the Elastic Properties of ZnO Nanobelts. Nano Letters 7, 1314–1317 (2007)

    Article  MathSciNet  Google Scholar 

  42. Chopra, N.G., Zettl, A.: Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Communications 105, 297–300 (1998)

    Article  Google Scholar 

  43. Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  44. Krishnan, A., et al.: Young’s modulus of single-walled nanotubes. Physical Review B 58, 14013–14019 (1998)

    Article  Google Scholar 

  45. Yu, M.-F., et al.: Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside a scanning electron microscope. Physical Review B 66, 73406 (2002)

    Article  Google Scholar 

  46. Poncharal, P., et al.: Electrostatic Deßections and Electromechanical Resonances of Carbon Nanotubes. Science 238, 1513–1516 (1999)

    Article  Google Scholar 

  47. Suryavanshi, A.P., et al.: Elastic modulus and resonance behavior of boron nitride nanotubes. Applied Physics Letters 84, 2527–2529 (2004)

    Article  Google Scholar 

  48. Chen, C.Q., et al.: Size Dependence of Young’s Modulus in ZnO Nanowires. Physical Review Letters 96, 075505-4 (2006)

    Google Scholar 

  49. Bai, X.D., et al.: Dual-mode mechanical resonance of individual ZnO nanobelts. Applied Physics Letters 82, 4806–4808 (2003)

    Article  Google Scholar 

  50. Huang, Y., Bai, X., Zhang, Y.: In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles. Journal of Physics: Condensed Matter 184, L179–L184 (2006)

    Google Scholar 

  51. Newnham, R.E.: Properties of Materials, 1st edn. Oxford University Press, New York (2005)

    Google Scholar 

  52. Wang, Z., et al.: Voltage Generation from Individual BaTiO3 Nanowires under Periodic Tensile Mechanical Load. Nano Letters 7, 2966–2969 (2007)

    Article  Google Scholar 

  53. Wang, Z.L., Song, J.: Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 312, 242–246 (2006)

    Article  Google Scholar 

  54. Gao, Y., Wang, Z.L.: Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics. Nano Letters 7, 2499–2505 (2007)

    Google Scholar 

  55. Lin, Y.-F., et al.: Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters 92 (2008)

    Google Scholar 

  56. Su, W.S., et al.: Generation of electricity in GaN nanorods induced by piezoelectric effect. Applied Physics Letters 90, 063110-3 (2007)

    Google Scholar 

  57. Chen, X., et al.: Potential measurement from a single lead zirconate titanate nanofiber using a nanomanipulator. Applied Physics Letters 94, 253113-3 (2009)

    Google Scholar 

  58. Güthner, P., Dransfeld, K.: Local poling of ferroelectric polymers by scanning force microscopy. Applied Physics Letters 61, 1137 (1992)

    Article  Google Scholar 

  59. Kolosov, O., et al.: Nanoscale visualization and control of ferroelectric domains by atomic force microscopy. Physical Review Letters 74, 4309–4312 (1995)

    Article  Google Scholar 

  60. Gruverman, A., Auciello, O., Tokumoto, H.: Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annual Review of Materials Science 28, 101–123 (1998)

    Article  Google Scholar 

  61. Alex, M., Gruverman, A.: Nanoscale characterisation of ferroelectric materials: scanning probe microscopy approach. Springer, Heidelberg (2004)

    Google Scholar 

  62. Hidaka, T., et al.: Formation and observation of 50 nm polarized domains in PbZr(1-x)Ti(x)o(3) thin films using scanning probe microscope. Applied Physics Letters 68, 2358–2359 (1996)

    Article  Google Scholar 

  63. Birk, H., et al.: The local piezoelectric activity of thin polymer films observed by scanning tunneling microscopy. Journal of Vaccum Science and Technology B 9, 1162–1165 (1991)

    Article  Google Scholar 

  64. Wang, Z., Hu, J., Yua, M.-F.: One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Applied Physics Letters 89, 263119 (2006)

    Article  Google Scholar 

  65. Wang, Z., Suryavanshi, A.P., Yu, M.-F.: Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO3 nanowire under direct axial electric biasing. Applied Physics Letters 89, 82903–82903 (2006)

    Article  Google Scholar 

  66. Kalinin, S.V., Rar, A., Jesse, S.: A Decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 2226–2252 (2006)

    Article  Google Scholar 

  67. Wang, J., et al.: Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires. Applied Physics Letters 90, 133107 (2007)

    Article  Google Scholar 

  68. Yun, W.S., et al.: Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy. Nano Letters 2, 447–450 (2002)

    Article  MathSciNet  Google Scholar 

  69. Luo, Y., et al.: Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Applied Physics Letters 83, 440–442 (2003)

    Article  Google Scholar 

  70. Zhao, M.-H., Wang, Z.-L., Mao, S.X.: Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope. Nano Letters 4, 587–590 (2004)

    Article  Google Scholar 

  71. Zhang, X.Y., et al.: Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47) O3 nanowire arrays. Applied Physics Letters 85, 4190–41992 (2004)

    Article  Google Scholar 

  72. Wang, J., et al.: Piezoresponse force microscopy on doubly clamped KNbO3 nanowires. Applied Physics Letters 93, 223101 (2008)

    Article  Google Scholar 

  73. Ke, T.-Y., et al.: Sodium Niobate Nanowire and Its Piezoelectricity. Journal of Physical Chemistry C 112, 8827–8831 (2008)

    Article  Google Scholar 

  74. Suyal, G., et al.: Piezoelectric Response and Polarization Switching in Small Anisotropic Perovskite Particles. Nano Letters 4, 1339–1342 (2004)

    Article  Google Scholar 

  75. Amdursky, N., et al.: Ferroelectric and related phenomena in biological and bioinspired nanostructures. Ferroelectrics 399, 107–117

    Google Scholar 

  76. Minary-Jolandan, M., Yu, M.-F.: Uncovering Nanoscale Electromechanical Heterogeneity in the Subfibrillar Structure of Collagen Fibrils Responsible for the Piezoelectricity of Bone. ACS Nano 3, 1859–1863 (2009)

    Article  Google Scholar 

  77. Minary-Jolandan, M., Yu, M.-F.: Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity. Nanotechnology 20, 085706 (2009)

    Google Scholar 

  78. Kholkin, A., et al.: Strong Piezoelectricity in Bioinspired Peptide Nanotubes. ACS Nano 4, 610–614 (2010)

    Article  Google Scholar 

  79. Nikiforov, M.P., et al.: Double-Layer Mediated Electromechanical Response of Amyloid Fibrils in Liquid Environment. ACS Nano 4, 689–698 (2010)

    Article  MathSciNet  Google Scholar 

  80. Chen, X., et al.: 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers. Nano Letters 10, 2133–2137 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Minary-Jolandan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Minary-Jolandan, M., Yu, MF. (2012). Mechanical and Electromechanical Characterization of One-Dimensional Piezoelectric Nanomaterials. In: Ciofani, G., Menciassi, A. (eds) Piezoelectric Nanomaterials for Biomedical Applications. Nanomedicine and Nanotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28044-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28044-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28043-6

  • Online ISBN: 978-3-642-28044-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics