Skip to main content

Preparation of Piezoelectric Nanoparticles

  • Chapter

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Due to their exceptional properties, the PZT–type materials have become the most important piezoelectric materials, having an extremely large area of applications in many fields. Their high conversion factors of 60–70 % makes them the most remarkable materials for ultrasound transducers. There are numerous methods to prepare such materials. Two physical methods are the most usual: the conventional mixed route in which the stoichiometric amounts of oxides are mixed together, followed by calcination to accomplish the solid–state reaction and the mechanochemical synthesis, where the chemical reaction takes place during milling, being activated by the mechanical energy of collisions. No calcination is necessary in this case. The resulted powders are more homogenous both structurally and chemically. Other relevant methods are: coprecipitation, hydrothermal and sol-gel routes. Here the reactions take place in solution, at molecular level, thus producing materials with a high degree of homogeneity. The precipitate product or the gel resulted is subjected to a calcination process at low temperatures and the powders are very homogenous and in the nanometric range (10–200 nm).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cady, W.G.: Piezoelectricity, pp. 1–20. McGraw-Hill, New York (1964); revised edition by Dover publications, New York (1946)

    Google Scholar 

  2. Valasek, J.: Piezoelectric and allied phenomena in Rochelle Salt. Phys. Rev. 17, 475–481 (1921)

    Article  Google Scholar 

  3. Busch, G.: Early history of ferroelectricity. Ferroelectrics 74, 267–284 (1987)

    Article  Google Scholar 

  4. Kanzig, W.: History of ferroelectricity 1938-1955. Ferroelectrics 74, 285–291 (1987)

    Article  Google Scholar 

  5. Fousek, J.: Ferroelectricity: Remarks on historical aspects and present trends. Ferroelectrics 113, 3–20 (1991)

    Article  Google Scholar 

  6. Haertling, G.H.: Ferroelectric ceramics: History and technology. J. Am. Cer. Soc. 82(4), 797–818 (1999)

    Article  Google Scholar 

  7. Gray, R. B.: Transducers and Method of Making Same. US Patent no. 2486560 (1949)

    Google Scholar 

  8. Jaffe, B., Cook Jr., W.R., Jaffe, H.: Piezoelectric Ceramics, ch. I. Acad. Press, London (1971)

    Google Scholar 

  9. Ballato, A.: Piezoelectricity: Old effect, new thrusts. IEEE Trans. Ultrasonics Ferroelectric Freq. Control 42, 916–926 (1995)

    Article  Google Scholar 

  10. Jaffe, B., Roth, R.S., Marzullo, S.: Piezoelectric properties of lead zirconate-lead titanate solid solutions ceramics. J. Appl. Phys. 25(6), 809–810 (1954)

    Article  Google Scholar 

  11. Lang, S.B.: Guide to the literature of piezoelectricity and pyroelectricity. Ferroelectrics 330, 51–60 (2006)

    Article  Google Scholar 

  12. Eyraud, L., Guiffard, B., Lebrun, L., Guyomar, D.: Interpretation of the softening effect in PZT ceramics near the morphotropic phase boundary. Ferroelectrics 330, 51–60 (2006)

    Article  Google Scholar 

  13. van Randeraat, J., Setterington, R.E.: Piezoelectric ceramics. Mullard Ltd., London (1974)

    Google Scholar 

  14. Isupov, V.A.: Phases in the PZT ceramics. Ferroelectrics 266, 91–102 (2002)

    Article  Google Scholar 

  15. Cao, W., Cross, L.E.: Theoretical model for the morphotropic phase boundary in PZT solid solution. Phys. Rev. B Condensed Matter 47(9), 4825–4830 (1993)

    Article  Google Scholar 

  16. Noheda, B., Cox, D.E., Shirane, G., Gonzalo, J.A., Cross, L.E., Park, S.E.: A monoclinic ferroelectric phase in the PZT solid solutions. Appl. Phys. Lett. 74, 2059–2061 (1999)

    Article  Google Scholar 

  17. Noheda, B., Cox, D.E., Shirane, G., Guo, R., Jones, B., Cross, L.E.: Stability of the monoclinic phase in the ferroelectric perovskite PZT. Phys. Rev. B 63, 14103 (2000)

    Article  Google Scholar 

  18. Ahart, M., Somayazulu, M., Cohen, R.E., Gamesh, P., Dera, P., Mao, H.K., Hemley, R.J., Ren, Y., Liermann, P., Wu, Z.: Origin of the morphotropic phase boundary in ferroelectrics. Nature 45(1), 545–548 (2008)

    Article  Google Scholar 

  19. Pandey, D., Singh, A.K., Baik, S.: Stability of ferroic phases in the highly PZT ceramics. Acta Cryst. A 64, 192–203 (2008)

    Article  Google Scholar 

  20. Yokota, H., Zhang, N., Taylor, A.E., Thomas, P.A., Glazer, A.M.: Crystal structure of the rhombohedral phase of PZT ceramics at room temperature. Phys. Rev. B 80, 104109 (2009)

    Article  Google Scholar 

  21. Yamamoto, T.: Ferroelectric properties of the PBZrO3-PbTiO3 system. Jpn. J. Appl. Phys. 35, 5104–5108 (1996)

    Article  Google Scholar 

  22. Yamashita, Y.: Piezoelectric properties of Nb-doped Pb(Sc0.5Nb0.5)1 − x Ti x O3 ceramics materials near MPB. Jpn. J. Appl. Phys. 33, 4652–4656 (1994)

    Article  Google Scholar 

  23. Moulson, A.J., Herbert, J.M.: Electroceramics – Materials, properties and applications, 2nd edn. J. Wiley & Sons, Ltd. (2003)

    Google Scholar 

  24. Callister, W.R.: Materials Science and Engineering: An introduction. J. Wiley & Sons Inc., Chichester (1994)

    Google Scholar 

  25. Banno, H.: Piezoelectric transducers and piezoelectric ceramics. In: Cahn, R.W. (ed.) Pergamon Press, Oxford (1995)

    Google Scholar 

  26. Cross, L.E.: Ferroelectric ceramics; Materials and application issues. In: Nair, K.M., Shukla, V.N. (eds.) Ceramic Trans., vol. 68. Am. Cer. Soc., Westerville (1996)

    Google Scholar 

  27. Gururaja, T.R.: Piezoelectrics for medical ultrasonic imaging. Am. Ceram. Soc. Bull. 73(5), 50–55 (1994)

    Google Scholar 

  28. Berlincourt, D.: Piezoelectric ceramics: characteristics and applications. J. Acoust. Soc. Am. 70, 1586–1595 (1981)

    Article  Google Scholar 

  29. Fukumoto, A.: The application of piezoelectric ceramics in diagnostic ultrasound transducers. Ferroelectrics 40, 217–230 (1982)

    Article  Google Scholar 

  30. Jong, N., Souquet, J., Faber, G., Bom, N.: Transducers in medical ultrasound: part two. Vibration modes, matching layers and grating lobes. Ultrasonics 23(4), 176–182 (1985)

    Article  Google Scholar 

  31. Kojima, T.: A review of piezoelectric materials for ultrasonic transducers. In: Proc. Ultrasonics Int. Conf., pp. 888–895 (1987)

    Google Scholar 

  32. Wells, P.N.T.: Biomedical Ultrasonics. Acad. Press, London (1977)

    Google Scholar 

  33. Gallego-Juarez, J.A.: Piezoelectric ceramics and ultrasonic transducers. J. Phys. E Sci. Instrum. 22, 804–816 (1989)

    Article  Google Scholar 

  34. Gerard, L.C., Ryszard, M.L., Michael, V.P.: Emerging biomedical sensing technologies and their applications. IEEE Sens. J. 3(3), 251–266 (2003)

    Article  Google Scholar 

  35. Senna, M.: A straight way toward phase pure complex oxides. J. Eur. Cer. Soc. 25(12), 1977–1984 (2005)

    Article  Google Scholar 

  36. Perez, J.A., Soares, M.R., Mantas, P.Q., Senos, A.M.R.: Microstructural design of PZT ceramics. J. Eur. Cer. Soc. 25(12), 2207–2210 (2005)

    Article  Google Scholar 

  37. Maiwa, H., Kimura, O., Shoji, K., Ochiai, H.: Low temperature sintering of PZT ceramics without additives via an ordinary ceramic route. Eur. Cer. Soc. 25, 2383–2385 (2005)

    Article  Google Scholar 

  38. Walmsley, A.: Ceramic analysis and social processes, pottery and society in antiquity. In: Int. Cer.Monograph, Proc. Int. Cer. Conf. Austceram, vol. 1 (1&2), pp. 10–15 (1994)

    Google Scholar 

  39. Sowada, K.N.: A study in ceramic specialisation and chronology. In: Int. Cer. Monograph, Proc. Int. Cer. Conf. Austceram, vol. 1 (1&2), pp. 34–40 (1994)

    Google Scholar 

  40. Chung, A.: Chinese porcelain and technological discovery – a unique cultural environment. In: Int. Cer. Monograph, Proc. Int. Cer. Conf. Austceram, vol. 1 (1,2), pp. 44–48 (1994)

    Google Scholar 

  41. Baldyrev, V.V., Tkacova, K.: Mechanochemistry of Solids: Past, present and prospects. Mat. Synth. Processing 8(3-4), 121–132 (2000)

    Article  Google Scholar 

  42. Carey Lea, M.: Disruption of the silver haloid molecule by mechanical force. Phyl. Mag. 34, 46–50 (1892)

    Google Scholar 

  43. Carey Lea, M.: On Endothermic Decompositions, Obtained by Pressure. Part II. Transformation of Energy by Shearing Stress. Am. J. Sci. 46, 413–420 (1893)

    Google Scholar 

  44. Cocco, G., Delogu, F., Schiffini, L.: Toward a quantitative understanding of the mechanical alloying process. J. Mat. Synth. Procesing 8(3-4), 167–180 (2000)

    Article  Google Scholar 

  45. Wang, J., Xue, J.M., Wan, D.M., Gan, B.K.: Mechanically activating nucleation and growth of complex perovskites. J. Sol. State Chem. 154, 321–328 (2000)

    Article  Google Scholar 

  46. Stojanovic, B.D.: Mechanochemical synthesis of ceramic powders with perovskite structure. J. Mater. Process Technology 143-144, 78–81 (2003)

    Article  Google Scholar 

  47. Alguero, M., Alemany, C., Jimenez, B., Holc, J., Kosec, M., Pardo, L.: Piezoelectric PMN-PT ceramics from mechanochemically activated precursors. J. Eur. Cer. Soc. 24(1), 937–940 (2004)

    Article  Google Scholar 

  48. Xue, J., Wan, D., Lee, S.E., Wang, J.: Mechanochemical synthesis of nanosized lead titanate powders from mixed oxides. J. Am. Cer. Soc. 82, 1687–1692 (1999)

    Article  Google Scholar 

  49. Ding, J., Suzuki, T., McCormic, P.G.: Ultrafine alumina prepared by mechanical/thermal processing. J. Am. Cer. Soc. 79, 2956–2958 (1996)

    Article  Google Scholar 

  50. Boldyrev, V.V.: Mechanochemistry and mechanical activation. Mater. Sci. Forum 225-227, 511–520 (1996)

    Article  Google Scholar 

  51. Gaffet, E., Michael, D., Mazerolles, L., Berthet, P.: Effect of high energy ball milling on ceramic oxides. Mater. Sci. Forum 235-238, 103–108 (1997)

    Article  Google Scholar 

  52. Kmecova, M., Medvecky, L., Briancin, J., Brunckova, H.: PZT ceramics prepared from mechanically activated calcinate. Ferroelectrics 319(1), 35–44 (2005)

    Article  Google Scholar 

  53. Bernard, F., Paris, S., Gaffet, E.: Mechanical activation as a new method for SHS. Adv. Sci. Technology 45, 979–988 (2006)

    Article  Google Scholar 

  54. Sreckovic, T.: Sintering of mechanically activated powders. Adv. Sci. Technology 45, 619–628 (2006)

    Article  Google Scholar 

  55. Abe, O., Suzuki, Y.: Mechanically assisted preparation of BaTiO3 powder. Mat. Sci. Forum 225-227, 563–568 (1996)

    Article  Google Scholar 

  56. Gomez-Yanez, O., Benitez, C., Ramirez, H.B.: Mechanical activation of the synthesis reaction of BaTiO3 from a mixture of BaCO3 and TiO2 powders. Cer. Int. 26, 271–277 (2000)

    Article  Google Scholar 

  57. Xue, J., Wang, J., Wan, D.: Nanosized barium titanate powder by mechanical activation. J. Am. Cer. Soc. 83(19), 232–234 (2000)

    Article  Google Scholar 

  58. Stojanovic, B.D., Simoes, A.Z., Paiva-Santos, C.O., Jovalekic, C., Mitic, V.V., Varela, J.A.: Mechanochemical synthesis of barium titanate. J. Eur. Cer. Soc. 25, 1985–1989 (2005)

    Article  Google Scholar 

  59. Brankovic, Z., Brankovic, G., Jovalekic, C., Maniette, Y., Cilense, M., Varela, J.A.: Mechanochemical synthesis of PZT powders. Mat. Sci. Engineering A 345, 243–248 (2003)

    Google Scholar 

  60. Shantha, K., Subbanna, G.N., Varma, K.B.R.: Mechanically activated synthesis of nanocrystalline powders of ferroelectric bismuth vanadate. J. Solid Stat. Chem. 142(1), 41–44 (1999)

    Article  Google Scholar 

  61. Szafraniak, I., Polomiska, M., Hilczer, B.: XRD, TEM and Raman scattering studies of PbTiO3 nanopowders. Cryst. Res. Technol. 41(6), 576–579 (2006)

    Article  Google Scholar 

  62. Welham, N.J., Willis, P.E., Kerr, T.: Mechanochemical formation of metal-ceramic composites. J. Am. Cer. Soc. 83(1), 33–40 (2000)

    Article  Google Scholar 

  63. Dodd, A.C., McCormick, P.G.: Synthesis of nanocrystalline ZrO2 powders by mechanochemical reaction of ZrCl4 with LiOH. J. Eur. Cer. Soc. 22(11), 1823–1829 (2002)

    Article  Google Scholar 

  64. Stojanovic, B.D.: Mechanochemical synthesis of ceramic powders with perovskite structure. J. Mat. Processing Technol. 143-144, 78–81 (2003)

    Article  Google Scholar 

  65. Alguero, M., Alemany, C., Jimenez, B., Halc, J., Kosec, M., Pardo, L.: Piezoelectric PMN-PT ceramics from mechanochemically activated precursors. J. Eur. Cer. Soc. 24(6), 937–940 (2004)

    Article  Google Scholar 

  66. Xu, H., Gao, L., Zhou, H., Guo, J.: Synthesis of nanopowders of Ba(Ti0.8Zr0.2)O3. Mat. Letters 58(14), 1999–2001 (2004)

    Article  Google Scholar 

  67. Arantes, V.L., Souza, D.P.F.: High energy ball milling of tin titanate zirconate for use in microwave applications. Adv. Sci. Technol. 45, 480–485 (2006)

    Article  Google Scholar 

  68. Miclea, C., Tanasoiu, C., Gheorghiu, A., Miclea, C.F., Tanasoiu, V.: Synthesis and piezoelectric properties of nanocrystalline PZT based ceramics prepared by high energy ball milling process. J. Mat. Sci. 39, 5431–5434 (2004)

    Article  Google Scholar 

  69. Miclea, C., Tanasoiu, C., Miclea, C.F., Spanulescu, I., Gheorghiu, A., Cioangher, M.: Structure and magnetic properties of strontium hexaferrites nanopowder prepared by mechanochemical synthesis. Adv. Sci. Technology 45, 321–326 (2006)

    Article  Google Scholar 

  70. Miclea, C., Amarande, L., Tanasoiu, C., Miclea, C.F.: Mechanochemical synthesis of nanostructured complex perovskites. In: CONCORDE Workshop on Nanostructured Oxides, Valencia, Spain (2004)

    Google Scholar 

  71. Thadhani, N.N.: Shock-induced and shock-assisted solid state chemical reactions in powder mixtures. J. Appl. Phys. 76, 2129–2138 (1994)

    Article  Google Scholar 

  72. Mazdiyasni, K.S.: Fine particle perovskite processing. Am. Cer. Soc. Bull. 63(4), 591–594 (1984)

    Google Scholar 

  73. Haertling, G.H.: Electrooptic ceramics and devices. In: Levinson, L.M. (eds.) Electronic Ceramics, pp. 371–492. Marcel Deker, New York (1988)

    Google Scholar 

  74. Weddigen, A., Hennige, V.D., Gunther, E., Ritzhaupt-Kleissl, H.J.: Production of piezoceramic powders by the thermal two stage process. J. Mat. Sci. 34, 3461–3465 (1999)

    Article  Google Scholar 

  75. Bose, S., Banerjee, A.: Novel synthesis route to make nanocristalline lead zirconate titanate powder. J. Am. Cer. Soc. 87(3), 487–489 (2004)

    Article  Google Scholar 

  76. Bruno, M.A., Eiras, J.A.: Preparation of coprecipitated ferroelectric ceramic powders by two stage calcination. J. Am. Cer. Soc. 76(11), 2734–2736 (1993)

    Article  Google Scholar 

  77. Kim, M.H., Golovchanski, A., Lee, S.I., Park, T.G., Song, T.K.: Synthesis of PZT nanopowders by milling coprecipitation method. J. Electroceramics 13, 367–371 (2004)

    Article  Google Scholar 

  78. Byrappa, K., Yoshimura, M.: Handbook of hydrothermal technology. Noyes Publications, William Andrew Publishing LLC, USA (2001)

    Google Scholar 

  79. Suchanek, W.L., Riman, R.E.: Hydrothermal synthesis of advanced ceramic powders. Adv. Sci. Technology 45, 184–193 (2006)

    Article  Google Scholar 

  80. Millar, C.E., Pedersen, L., Wolny, W.W.: SmC5: Hydrothermaly processed piezoelectric and electrostrictive ceramics. Ferroelectrics 133(1), 271–276 (1992)

    Article  Google Scholar 

  81. Cho, S.B., Oledzka, M., Riman, E.R.: Hydrothermal synthesis of acicular lead zirconate titanate (PZT). J. Cryst. Growth 226, 313–372 (2001)

    Article  Google Scholar 

  82. Deng, Y., Yin, Z., Chen, Q., Zhang, M.S., Zhang, W.F.: Structural and phonon characteristics of Pb x La1 − x TiO3 nanocrystals prepared by hydrothermal technique. Mat. Sci. Eng. 84(3), 248–251 (2001)

    Article  Google Scholar 

  83. Deng, Y., Liu, L., Cheng, Y., Nan, C.W., Zhao, S.: Hydrothermal synthesis and characterization of nanocrystalline PZT powders. Mat. Lett. 57, 1675–1678 (2003)

    Article  Google Scholar 

  84. Mandoki, N.T., Courtois, C., Champagne, P., Leriche, A.: Hydrothermal synthesis of doped PZT powders: Sintering and ceramic properties. Mat. Lett. 58, 2489–2493 (2004)

    Article  Google Scholar 

  85. Piticescu, R.M., Moisin, A.M., Taloi, D., Badilita, V., Soare, I.: Hydrothermal synthesis of ultradisperse PZT powders for polar ceramics. J. Eur. Cer. Soc. 24, 931–935 (2004)

    Article  Google Scholar 

  86. Harada, S., Dunn, S.: Low temperature hydrothermal routes to various PZT stoichiometries. Electroceram. 20, 65–71 (2008)

    Article  Google Scholar 

  87. Qiu, Z.C., Zhou, J.P., Zhu, G., Liu, P., Bian, X.B.: Hydrothermal synthesis of PZT powders at low temperatures and low alkaline concentration. Bull. Mater. Sci. 32, 193–197 (2009)

    Article  Google Scholar 

  88. Komarneni, S., Roy, R., Li, Q.H.: Microwave hydrothermal synthesis of ceramic powders. Mat. Res. Bull. 27(12), 1392–1405 (1992)

    Article  Google Scholar 

  89. Abothu, I.R., Liu, S., Komarneni, S., Li, Q.H.: Processing of PZT ceramics from microwave and conventional hydrothermal powders. Mat. Res. Bull. 34, 1411–1419 (1999)

    Article  Google Scholar 

  90. Sun, W., Li, C., Li, J., Liu, W.: Microwave hydrothermal synthesis of tetragonal BaTiO3 under various conditions. Mater. Chem. Phys. 97, 481–487 (2006)

    Article  Google Scholar 

  91. Lv, J., Zhang, M., Wang, X., Guo, M., Li, W., Wang, X.: Hydrothermal synthesis and characterization of K x Na1 − x NbO3 powders. Int. J. Appl. Ceram. Technol. 4(6), 571–577 (2007)

    Article  Google Scholar 

  92. Cho, J.H., Ma, Y.J., Lee, Y.H., Chun, M.P., Kim, B.I.: Piezoelectric ceramic powder synthesis of bismuth-sodium titanate by a hydrothermal process. J. Ceram. Processing Res. 7(2), 91–94 (2006)

    Google Scholar 

  93. Rujiwatra, A., Wongtaewan, C., Pinyo, W., Ananta, S.: Sonocatalyzed hydrothermal preparation of lead titanate nanopowders. Mat. Lett. 61(23), 4522–4524 (2007)

    Article  Google Scholar 

  94. Goh, G.K.L., Lange, F.F., Haile, S.M., Levi, C.G.: Hydrothermal synthesis of KNbO3 and NaNbO3 powders. Mat. Res. 18(2), 338–345 (2003)

    Article  Google Scholar 

  95. Zhang, F., Han, L., Bai, S., Sun, T., Karaki, T., Adachi, M.: Hydrothermal synthesis of (K,Na)NbO3 particles. Jpn. J. Appl. Phys. 47(9), 7685–7688 (2008)

    Article  Google Scholar 

  96. Zhou, Y., Guo, M., Zhang, C., Zhang, M.: Hydrothermal synthesis and piezoelectric properties of Ta-doped K0.5Na0.5NbO3 lead free piezoelectric ceramics. Ceramics Int. 35, 3253–3258 (2009)

    Article  Google Scholar 

  97. Zhang, M., Guo, M., Zhou, Y.: Low-temperature preparation of K x Na1 − x NbO3 lead free piezoelectric powders by microwave hydrothermal synthesis. Int. J. Appl. Ceram. Technol. 6, 571–577 (2009)

    Article  Google Scholar 

  98. Livage, J., Henry, M., Sanchez, C.: Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18(4), 259–341 (1988)

    Article  Google Scholar 

  99. Brinker, C.J., Scherer, G.W.: Sol-gel science. The physics and chemistry of sol-gel processing. Acad. Press, New York (1990)

    Google Scholar 

  100. Hench, L.L., West, J.K.: The sol-gel process. Chem. Rev. 90(1), 33–72 (1990)

    Article  Google Scholar 

  101. Zeng, J., Sing, S., Wang, L., Zhang, M., Zheng, L., Lin, C.: Sol gel preparation of PZT. Am. Cer. Soc. 82, 301–304 (1999)

    Google Scholar 

  102. Suroviack, Z., Kupryanov, M.F., Czekaj, D.: Properties of nanocrystalline ferroelectric PZT ceramics. J. Eur. Cer. Soc. 21(10-11), 1377–1381 (2001)

    Article  Google Scholar 

  103. Jacob, K.S., Panicker, N.R., Selvam, I.P., Kumar, V.: Sol gel synthesis of nanocristalline PZT using a novel system. J. Sol-gel Sci. Technology 28, 289–295 (2003)

    Article  Google Scholar 

  104. Sangsubun, C., Naksata, M., Watcharapasorn, A., Tunkasiri, T., Jiansirisomboon, S.: Preparation of PZT nanopowders via sol gel processing. CMU J. Special Issue on Nanotechnology 4(1), 53–58 (2005)

    Google Scholar 

  105. Zhang, D., Liu, H., Cao, M.: Sol gel synthesis and characterisation of Nd3 +  doped PZT nanopowders using a novel system. In: Proc. 1st IEEE Int. Conf. Nano/Micro Eng. Molec. System China, pp. 266–269 (2006)

    Google Scholar 

  106. Garnweitner, G., Niedrberges, M.: Nonaqueous and surfactant free synthesis routes to metal oxide nanoparticles. J. Am. Cer. Soc. 89(6), 1801–1808 (2006)

    Article  Google Scholar 

  107. Linardos, S., Zhang, Q., Alcock, J.R.: Preparation of sub-micron PZT particles with the sol gel technique. J. Eur. Cer. Soc. 26, 117–123 (2006)

    Article  Google Scholar 

  108. Fernandez-Osorio, A.L., Vasquez-Olmos, A., Mata-Zamora, E., Saniger, J.M.: Preparation of free-standing PZT nanoparticles by sol-gel method. J. Sol-gel Sci. Techn. 42, 145–149 (2007)

    Article  Google Scholar 

  109. Faheem, Y., Shoaib, M.: Sol gel processing and characterization of phase pure lead zirconate titanate nanopowders. J. Am. Cer. Soc. 89(6), 2034–2037 (2006)

    Article  Google Scholar 

  110. Faheem, Y., Jaya, K.S.: Phase transformation and free standing nanoparticles formation in lead zirconate titanate derived by sol-gel. Appl. Phys. Lett. 91, 063115 (2007)

    Google Scholar 

  111. Zhang, D.Q., Wang, S.J., Sun, H.S., Wang, X.L., Cao, M.S.: Synthesis and mecha-nism research of an ethylene glycol-based sol-gel method for preparing PZT nanopowders. J. Sol. Gel. Sci. Techn. 41, 157–161 (2007)

    Article  MATH  Google Scholar 

  112. Sreesattabud, T., Watcharapasorn, A., Jiansirisomboon, S.: Fabrication and characterization of sol gel derived PZT/WO3 ceramics. Adv. Mat. Res. 55-57, 369–372 (2008)

    Article  Google Scholar 

  113. Sachdeva, A., Arora, M., Tandon, R.P.: Synthesis and characterization of sol gel derived nanopowder. J. Nanosci. Nanotechnology 9(11), 6631–6636 (2009)

    Article  Google Scholar 

  114. Ghasemifard, M., Hosseini, S.M., Khorsand Zak, A., Khornami, G.H.: Microstructural and optical characterization of PZT nanopowder prepared at low temperature. Physics E 41, 418–422 (2009)

    Article  Google Scholar 

  115. Raju, K., Venugopal Reddy, P.: Synthesis and characterization of microwave processed PZT material. Current Appl. Phys. 10, 31–35 (2010)

    Article  Google Scholar 

  116. Khorsand Zak, A., Majid, W.H.A., Darroudi, M.: Synthesis and characterization of sol gel derived single phase PZT nanoparticles in aqueous polyol solution. J. Optoelectron Adv. Mat. 12(8), 1714–1719 (2010)

    Google Scholar 

  117. Khorsand Zak, A., Abd Majid, W.H.A.: Characterization and X-ray peak broadening analysis in PZT nanoparticles prepared by modified sol-gel method. Ceramics International 36, 1905–1910 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornel Miclea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Miclea, C. (2012). Preparation of Piezoelectric Nanoparticles. In: Ciofani, G., Menciassi, A. (eds) Piezoelectric Nanomaterials for Biomedical Applications. Nanomedicine and Nanotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28044-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28044-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28043-6

  • Online ISBN: 978-3-642-28044-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics