Advertisement

Query Processing Using Negative and Temporal Tuples in Stream Query Engines

  • Marcin Gorawski
  • Aleksander Chrószcz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7054)

Abstract

In this paper, we analyze how stream monotonicity classification can be adopted for the introduced developed model, which processes both temporal and negative events. As we show, information about stream monotonicity can be easily used to optimize individual stream operators as well as a full query plan. Comparing our stream engine with such engines as CEDR, STREAM and PIPES we demonstrate how a primary key constraint can be used in different types of the developed stream schemes. We implemented all of the above techniques in StreamAPAS.

Keywords

Query Processing Query Plan Continuous Query Aggregate Operator Stream Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barga, R.S., Goldstein, J., Ali, M.H., Hong, M.: Consistent Streaming Through Time: A Vision for Event Stream Processing. In: CIDR, pp. 363–374 (2007)Google Scholar
  2. 2.
    Krämer, J., Seeger, B.: A Temporal Foundation for Continuous Queries Over Data Streams. In: COMAD, pp. 70–82 (2005)Google Scholar
  3. 3.
    Krämer, J.: Continuous Queries Over Data Streams Semantics and Implementation. PhD thesis, Philipps-Universität Marburg (2007)Google Scholar
  4. 4.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data Stream Systems. In: PODS 2002: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 1–16. ACM Press, New York (2002)Google Scholar
  5. 5.
    Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: a New Model and Architecture for Data Stream Management. The VLDB Journal 12(2), 120–139 (2003)CrossRefGoogle Scholar
  6. 6.
    Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Galvez, E., Salz, J., Stonebraker, M., Tatbul, N., Tibbetts, R., Zdonik, S.: Retrospective on Aurora. The VLDB Journal 13(4), 370–383 (2004)CrossRefGoogle Scholar
  7. 7.
    Ghanem, T.M., Hammad, M.A., Mokbel, M.F., Aref, W.G., Elmagarmid, A.K.: Query Processing Using Negative Tuples in Stream Query Engines. Technical Report 04-040, Purdue University (2005)Google Scholar
  8. 8.
    Tucker, P.: Punctuated Data Streams. PhD thesis, OGI School of Science & Technology At Oregon Heath (2005)Google Scholar
  9. 9.
    Golab, L.: Sliding Window Query Processing over Data Streams. PhD thesis, University of Waterloo (2006)Google Scholar
  10. 10.
    Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G., Olston, C., Rosenstein, J., Varma, R.: Query Processing, Resource Management, and Approximation and in a Data Stream Management System. In: Proceedings of the First Biennial Conference on Innovative Data Systems Research (CIDR 2003), Asilomar, CA, USA, pp. 245–256 (2003)Google Scholar
  11. 11.
    Babcock, B., Babu, S., Datar, M., Motwani, R.: Chain: Operator Scheduling for Memory Minimization in Data Stream Systems. In: ACM International Conference on Management of Data (SIGMOD 2003), San Diego, CA, USA, pp. 253–264 (2003)Google Scholar
  12. 12.
    Ozsoyoglu, G., Snodgrass, R.T.: Temporal and Real-time Databases: A Survey. IEEE Transaction on Knowledge and Data Engineering 7(4), 513–532 (1995)CrossRefGoogle Scholar
  13. 13.
    Slivinskas, G., Jensen, C.S., Snodgrass, R.T.: Query Plans for Conventional and Temporal Queries Involving Duplicates and Ordering. In: Proceedings of the 16th International Conference on Data Engineering, ICDE 2000, pp. 547–558. IEEE Computer Society, Washington, DC (2000)Google Scholar
  14. 14.
    Slivinskas, G., Jensen, C.S., Snodgrass, R.T.: A Foundation for Conventional and Temporal Query Optimization Addressing Duplicates and Ordering. IEEE Transaction on Knowledge and Data Engineering 13(1), 21–49 (2001)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Marcin Gorawski
    • 1
  • Aleksander Chrószcz
    • 1
  1. 1.Institute of Computer ScienceSilesian University of TechnologyGliwicePoland

Personalised recommendations