Advertisement

Construction of Messaging-Based Enterprise Integration Solutions Using AI Planning

  • Pavol Mederly
  • Marián Lekavý
  • Marek Závodský
  • Pavol Návrat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7054)

Abstract

This paper presents a novel method of using action-based planning for construction of enterprise integration solutions that utilize messaging technologies. More specifically, the presented method is able to generate a sequence of processing steps needed to transform input message flow(s) to specified output message flow(s), taking into account requirements in areas of throughput, availability, service monitoring, message ordering, and message content and format conversions. The method has been implemented as a research prototype. It has been evaluated using scenarios taken from the literature as well as from real-world experience of the authors.

Keywords

Enterprise Application Integration Enterprise Integration Patterns Messaging Action-Based Planning STRIPS-like Planning 

References

  1. 1.
    Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and Dynamic Reconfiguration Planning for Distributed Software Systems. In: Proceedings of 15th IEEE International Conference on Tools with Artificial Intelligence, pp. 39–46. IEEE Computer Society (2003)Google Scholar
  2. 2.
    Chappell, D.A.: Enterprise Service Bus. O’Reilly Media, Inc., Sebastopol (2004)Google Scholar
  3. 3.
    Fikes, R.E., Nilsson, N.J.: STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. Artificial Intelligence 2, 189–208 (1971)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fröhlich, P., Link, J.: Automated Test Case Generation from Dynamic Models. In: Hwang, J. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 472–491. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Pearson Education, Inc., Boston (2004)Google Scholar
  6. 6.
    Mederly, P., Pálos, G.: Enterprise Service Bus at Comenius University in Bratislava. In: EUNIS 2008 VISION IT: Visions for IT in Higher Education, p. 129. University of Aarhus, Aarhus (2008), http://eunis.dk/papers/p98.pdf Google Scholar
  7. 7.
    Mederly, P., Lekavý, M.: Report on Evaluation of the Method for Construction of Messaging-Based Enterprise Integration Solutions Using AI Planning, http://www.fiit.stuba.sk/~mederly/evaluation.html
  8. 8.
    Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-Automated Adaptation of Service Interactions. In: Proceedings of WWW 2007, pp. 993–1002. ACM (2007)Google Scholar
  9. 9.
    Oh, S.-C., Lee, D., Kumara, S.R.T.: A Comparative Illustration of AI Planning-based Web Services Composition. ACM SIGecom Exchanges 5(5), 1–10 (2005)CrossRefGoogle Scholar
  10. 10.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krämer, B.J.: Service-Oriented Computing Research Roadmap. In: Cubera, F., Krämer, B.J., Papazoglou, M.P. (eds.) Dagstuhl Seminar Proceedings 05462. Internationales Begegnungs-und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)Google Scholar
  11. 11.
    Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)zbMATHGoogle Scholar
  13. 13.
    Scheetz, M., von Mayrhauser, A., France, R., Dahlman, E., Howe, A.E.: Generating Test Cases from an OO Model with an AI Planning System. In: Proceedings of 10th International Symposium on Software Reliability Engineering, pp. 250–259. IEEE Computer Society (1999)Google Scholar
  14. 14.
    Scheibler, T., Leymann, F.: A Framework for Executable Enterprise Application Integration Patterns. In: Mertins, K., et al. (eds.) Enterprise Interoperability III, pp. 485–497. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Troy, A.J., Eigenmann, R.: Context-Sensitive Domain-Independent Algorithm Composition and Selection. In: Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 181–192. ACM (2006)Google Scholar
  16. 16.
    Umapathy, K., Purao, S.: Representing and Accessing Design Knowledge for Service Integration. In: Proceedings of 2008 IEEE International Conference on Services Computing, pp. 67–74. IEEE Computer Society (2008)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Pavol Mederly
    • 1
  • Marián Lekavý
    • 1
  • Marek Závodský
    • 1
  • Pavol Návrat
    • 1
  1. 1.Faculty of Informatics and Information TechnologiesSlovak University of TechnologyBratislava 4Slovak Republic

Personalised recommendations