Advertisement

Computations in Graph Rewriting: Inductive Types and Pullbacks in DPO Approach

  • Maxime Rebout
  • Louis Féraud
  • Lionel Marie-Magdeleine
  • Sergei Soloviev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7054)

Abstract

In this paper, we give a new formalism for attributed graph rewrites resting on category theory and type theory. Our main goal is to offer a single theoretical foundation that embeds the rewrite of structural parts of graphs and attribute computations which has more expressive power for attribute computations as well.

References

  1. 1.
    Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars (a Survey). In: Ng, E.W., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 1–69. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  2. 2.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1. World Scientific (1997)Google Scholar
  3. 3.
    Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed Graph Transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Wolz, D.: Colimit Library for Graph Transformations and Algebraic Development Techniques (1998)Google Scholar
  6. 6.
    Rebout, M., Féraud, L., Soloviev, S.: A Unified Categorical Approach for Attributed Graph Rewriting. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 398–409. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Chemouil, D.: Isomorphisms of Simple Inductive Types Through Extensional Rewriting. Math. Structures in Computer Science 15(5) (2005)Google Scholar
  8. 8.
    Chemouil, D., Soloviev, S.: Remarks on Isomorphisms Of Simple Inductive Types. In: Mathematics, Logic and Computation, Eindhoven, April 7-May 7. ENTCS, vol. 85(7), pp. 1–19. Elsevier (2003)Google Scholar
  9. 9.
    Jouault, F., Bézivin, J., Barbero, M.: Towards an Advanced Model-driven Engineering Toolbox. Innovations in Systems and Software Engineering 5(1), 5–12 (2009)CrossRefGoogle Scholar
  10. 10.
    Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in Attribute Grammars for Modular Language Design. In: CC 2002. LNCS, vol. 2304, pp. 128–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Kahl, W.: A Relational-algebraic Approach to Graph Structure Transformation. PhD thesis, Universität der Bundeswehr München (2001)Google Scholar
  12. 12.
    Rebout, M.: Une approche catégorique unifiée pour la récriture de graphes attribués. PhD thesis, Université Paul Sabatier (2008)Google Scholar
  13. 13.
    Habel, A., Heckel, R., Taentzer, G.: Graph Grammars with Negative Application Conditions. Fundamenta Informaticae 26(3/4), 287–313 (1996)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ehrig, H., Ehrig, K., Taentzer, G., de Lara, J., Varró, D., Varró-Gyapay, S.: Termination Criteria for Model Transformation. In: Cordy, J.R., Lämmel, R., Winter, A. (eds.) Transformation Techniques in Software Engineering. Dagstuhl Seminar Proceedings, Schloss Dagstuhl, Germany. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), vol. 05161 (2005)Google Scholar
  15. 15.
    Bézivin, J., Schürr, A., Tratt, L.: Model Transformations in Practice Workshop. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 120–127. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T., Prange, U., Taentzer, G., Varró, D., Varró-Gyapay, S.: Model Transformation by Graph Transformation: A Comparative Study. In: MTiP 2005, International Workshop on Model Transformations in Practice (Satellite Event of MoDELS 2005) (2005)Google Scholar
  17. 17.
    Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A Model Transformation Tool. Science of Computer Programming 72(1-2), 31–39 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Heckel, R.: Graph Transformation in a Nutshell. In: Bézivin, J., Heckel, R. (eds.) Language Engineering for Model-Driven Software Development. Dagstuhl Seminar Proceedings, Schloss Dagstuhl, Germany. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), vol. 04101 (2004)Google Scholar
  19. 19.
    de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Schneider, H.J.: Implementing the Categorical Approach to Graph Transformations With Haskell. In: An Introduction to the Categorical Approach (Draft March 7, 2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Maxime Rebout
    • 1
  • Louis Féraud
    • 1
  • Lionel Marie-Magdeleine
    • 1
  • Sergei Soloviev
    • 1
  1. 1.IRIT, Université Paul SabatierToulouse cedex 9France

Personalised recommendations