Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1037 Accesses

Abstract

In Chap. 3, we showed that regardless of the structure and any assumption on a random chain we have \(i{\leftrightarrow} _Wj\subseteq \Uptheta_{ij}\) for any \(i,j\in [m]\) where \(\Uptheta_{ij}\) is the event that i, j belong to the same connected component of the infinite flow graph of \({\{W(k)\}}.\)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer to \(\|\cdot\|_\pi\) as a semi-norm because in general \(\|x\|_{\pi}=0\) does not imply \(x=0,\) unless \(\pi>0\) in which case \(\|\cdot\|_{\pi}\) is a norm.

References

  1. F. Fagnani, S. Zampieri, Randomized consensus algorithms over large scale networks. IEEE J. Sel. Areas Commun. 26(4), 634–649 (2008)

    Article  Google Scholar 

  2. A. Tahbaz-Salehi, A. Jadbabaie, A necessary and sufficient condition for consensus over random networks. IEEE Trans. Autom. Control 53(3), 791–795 (2008)

    Article  MathSciNet  Google Scholar 

  3. A. Tahbaz-Salehi, A. Jadbabaie, Consensus over ergodic stationary graph processes. IEEE Trans. Autom. Control 55(1), 225–230 (2010)

    Article  MathSciNet  Google Scholar 

  4. A. Kolmogoroff, Zur Theorie der Markoffschen Ketten. Mathematische Annalen 112(1), 155–160 (1936)

    Article  MathSciNet  Google Scholar 

  5. D. Blackwell, Finite non-homogeneous chains. Ann. Math. 46(4), 594–599 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Nedić, A. Olshevsky, A. Ozdaglar, J. Tsitsiklis, On distributed averaging algorithms and quantization effects. IEEE Trans. Autom. Control 54(11), 2506–2517 (2009)

    Article  Google Scholar 

  7. A. Jadbabaie, J. Lin, S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  8. A. Olshevsky, J. Tsitsiklis, On the nonexistence of quadratic lyapunov functions for consensus algorithms. IEEE Trans. Autom. Control 53(11), 2642–2645 (2008)

    Article  MathSciNet  Google Scholar 

  9. L. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)

    Article  Google Scholar 

  10. D. Spielman, Spectral Graph Theory, The Laplacian, University Lecture Notes, 2009, available at: http://www.cs.yale.edu/homes/spielman/561/lect02-09.pdf

  11. B. Touri, A. Nedić, On ergodicity, infinite flow and consensus in random models. IEEE Trans. Autom. Control 56(7), 1593–1605 (2011)

    Article  Google Scholar 

  12. J. Lorenz, A stabilization theorem for continuous opinion dynamics. Phys. A: Stat. Mech. Appl. 355, 217–223 (2005)

    Article  MathSciNet  Google Scholar 

  13. V. Blondel, J. Hendrickx, A. Olshevsky, J. Tsitsiklis, Convergence in multiagent coordination, consensus, and flocking, in Proceedings of IEEE CDC, (2005)

    Google Scholar 

  14. M. Cao, A.S. Morse, B.D.O. Anderson, Reaching a consensus in a dynamically changing environment: A graphical approach. SIAM J. Control Optim. 47, 575–600 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Touri, A. Nedić, On approximations and ergodicity classes in random chains, (2010) under review

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Touri, B. (2012). Infinite Flow Stability. In: Product of Random Stochastic Matrices and Distributed Averaging. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28003-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28003-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28002-3

  • Online ISBN: 978-3-642-28003-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics