Skip to main content

68Ga Generator Integrated System: Elution–Purification–Concentration Integration

  • Conference paper
  • First Online:
Book cover Theranostics, Gallium-68, and Other Radionuclides

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 194))

Abstract

A 68Ge/68Ga generator combined with an automated 68Ga eluate purification–concentration unit [radioisotope generator integrated system (RADIGIS)], specially designed for 68Ga processing (RADIGIS-68Ga), was developed. The high-stability sorbents of a nanocrystalline structure Zr-Ti ceramic matrix were used for immobilizing the 68Ge, and the 68Ga was eluted from the sorbent column with 3.5 mL 0.05–0.1 M HCl solution following an optimized 68Ga-elution schedule. The 68Ge breakthrough <10−3% and no 68Ge zone spreading/drift found in PET imaging of the 68Ga generator column prove the excellent performance of the sorbents. 68Ga eluate was purified on a small column of salt-form ion exchange resin using an aqueous alcohol solution mixture of hydrochloric and ascorbic acids, and halide salts. An alkali solution was used for stripping 68Ga from the ion exchange resin column to obtain a purified 68Ga solution, which is conditioned with acidic solution to obtain a final 68Ga product in either 0.75 mL 0.5 M NaCl solution of pH 3–4 or 0.5 M sodium acetate or citrate solution of pH 5. The 68Ge content in purified 68Ga solution was <10−6%. An insignificant metallic contamination including 68Zn found in the 68Ga solution and its alkalinity–acidity were evaluated with respect to 68Ga radiolabeling efficacy for DOTATATE and DOTATOC ligands. Quality control protocols were also developed to evaluate the quality of 68Ga solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aardaneh K, Van der Walt TN (2006) Ga2O for target, solvent extraction for radiochemical separation and SnO2 for the preparation of a 68Ge/68Ga generator. J Radioanal Nucl Chem 268:25–32

    Article  CAS  Google Scholar 

  • Arino H, Skraba WJ, Kramer HH (1978) A new 68Ge/68Ga radioisotope generator system. Int J Appl Radiat Isot 29:117–120

    Article  CAS  Google Scholar 

  • Asti M, Pietri GD, Fraternali A et al (2008) Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC. Nucl Med Biol 35:721–724

    Article  PubMed  CAS  Google Scholar 

  • Bao B, Song M (1996) A new 68Ge/68Ga generator based on CeO2. J Radioanal Nucl Chem Lett 213:233–238

    Article  CAS  Google Scholar 

  • Blois E, Chan HS, Naidoo C et al (2011) Characteristics of Sn2O-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides. Appl Radiat Isot 69:308–315

    Article  PubMed  Google Scholar 

  • Bokhari TH, Mushtaq A, Khan IU (2009) Concentration of 68Ga via solvent extraction. Appl Radiat Isot 67:100–102

    Article  PubMed  CAS  Google Scholar 

  • Browne E, Firestone RB (1986) Ge-68 and Ga-68. In: Shirley VS (ed) Table of radioactive nuclides. Wiley, New York

    Google Scholar 

  • Caletka R, Kotas P (1974) Separation of germanium from some elements by adsorption of silica gel. J Radioanal Chem 21:349–353

    Article  CAS  Google Scholar 

  • Chakravarty R, Shukla R, Ram R (2011) Development of a nano-zirconia based 68Ge/68Ga generator for biomedical applications. Nucl Med Biol 38:575–583

    Article  PubMed  CAS  Google Scholar 

  • Eckerman KF, Endo A (2011) MIRD: radionuclide data and decay schemes, 2nd edn. The Society of Nuclear Medicine, Reston

    Google Scholar 

  • Egamediev SKh, Khujaev S, Mamatkazina AKh (2000) Influence of preliminary treatment of aluminium oxide on the separation of 68Ge-68Ga radionuclide chain. J Radioanal Nucl Chem 246:593–596

    Article  CAS  Google Scholar 

  • Erhardt GJ, Wetch MJ (1978) A new Germanium-68/Gallium-68 generator. J Nucl Med 19:925–929

    Google Scholar 

  • Erhardt GJ, Wetch MJ (1992) United States Patent no. 5,154,897

    Google Scholar 

  • European Association of Nuclar Medicine EANM-Monograph 2464 (2011) Galliumchloride(68 Ga) solution for radiolabelling. Pharmeuropa 23:507–509

    Google Scholar 

  • Greene MW, Tucker WD (1961) An improved Gallium-68 cow. Int J Appl Radiat Isot 12:62–63

    Article  CAS  Google Scholar 

  • Hsin-Li (2009) A new Ge-68/Ga-68 generator system using a higher sorption capacity resin as adsorbent for Ge-68. J Nucl Med 50:2137

    Google Scholar 

  • Kopecky P, Mudrova B (1974) 68Ge-68Ga generator for the production of 68Ga in an ionic form. Int J Appl Radiat Isot 25:263–268

    Article  CAS  Google Scholar 

  • Kopecky P, Mudrova B, Svoboda K (1973) The study of conditions for the preparation and utilization of 68Ge-68Ga generator. Int J Appl Radiat Isot 24:73–80

    Article  CAS  Google Scholar 

  • Kozlova MD, Malinin AB, Kodina GE (1994) Development of 68Ge/68Ga generator in institute of biophysics. J Lab Comp Radiopharm 35:282

    Google Scholar 

  • Le VS (1990) Preparation of gel-type chromatographic 99mTc generators using titaniummolybdate and zirconium-molybdate columns containing (n,gamma) 99Mo. IAEA Research Co-ordination Meeting, BRIT-Bombay, India

    Google Scholar 

  • Le VS (2003) 99mTc generator preparation using (n,gamma) 99Mo produced ex-natural molybdenum. Proceeding of the 2001 Workshop on the utilization of research reactors, November 2001 Beijing China. JAERIConf- 2003-004, 216–223 http://jolissrch-inter.tokai-sc.jaea.go.jp/pdfdata/JAERIConf-2003-004.pdf

  • Le VS (2011a) Sorbent material. WIPO (World Intellectual Property Organization), WO 2011/106847 A1

    Google Scholar 

  • Le VS (2011b) 68Gallium purification. WIPO (World Intellectual Property Organization), WO 2011/106846 A1

    Google Scholar 

  • Le VS, Nguyen C D, Bui V C et al. (2007) Synthesis, characterization and application of PTC and PZC sorbents for preparation of chromatographic 99mTc and 188Re generators. In: ANSTO publications online, http://apo.ansto.gov.au/dspace/handle/10238/3715

  • Le VS, Nguyen CD, Pellegrini P et al (2009a) Polymeric titanium oxychloride sorbent for 188W/188Re nuclide pair separation. Sep Sci Tech 44:1074–1098

    Article  Google Scholar 

  • Le VS, Nguyen CD, Bui VC et al (2009b) Preparation of inorganic polymer sorbents and their application in radionuclide generator technology. In: IAEA (ed) Therapeutic radionuclide generators: 90Sr/90Y and 188W/188Re generators, technical report series no. 470, IAEA, Vienna

    Google Scholar 

  • Le VS, Izard M, Pellegrini P et al (2011a) Development of 68Ga generator at ANSTO. In: ANSTO publications online, http://apo.ansto.gov.au/dspace/handle/10238/3701

  • Le VS, Morcos N, Oehlke E et al (2012) Methods of protocol development for radionuclidic purity test of radioisotope products used in nuclear medicine. J Radioanal Nucl Chem (submission)

    Google Scholar 

  • Le VS, Izard M, Pellegrini P et al (2011b) Development of 68Ga generator at ANSTO. Abstracts of poster presentations (chemistry). World J Nucl Med 10:86

    Google Scholar 

  • Lewis RE, Milford N H (1982) Method and system for generating and collecting Gallium-68 using alkaline eluant. United States Patent 4,330,507

    Google Scholar 

  • Lievens P, Hoste J (1974) Selective removal of germanium by retention on silica gel. Anal Chim Acta 70:462–464

    Article  CAS  Google Scholar 

  • Loc’h C, Maziere B, Comar D (1980) A new generator for ionic Gallium-68. J Nucl Med 21:171–173

    PubMed  Google Scholar 

  • Loktionova NS, Belozub AN, Filosofov DV, Zhernosekov KP, Wagner T, Turler A, Rösch F (2011) Improved column-based radiochemical processing of the generator produced 68Ga. Appl Radiat Isot 69:942–946

    Article  PubMed  CAS  Google Scholar 

  • McAlister DR, Horwitz EP (2009) Automated two column generator systems for medical radionuclides. Appl Radiat Isot 67:1985–1991

    Article  PubMed  CAS  Google Scholar 

  • McElvany KD, Hopkins KT, Welch MJ (1984) Comparison of 68Ge/68Ga generator systems for radiopharmaceutical production. Int J Appl Radiat Isot 35:521–524

    Article  CAS  Google Scholar 

  • Mourtada F, Azhdarinia A, Yang D (2009) Automated system for formulating radiopharmaceuticals. United States Patent US 2008/0035542 A1

    Google Scholar 

  • Neirinckx RD, Davis MA (1979) Potential column chromatography generators for ionic Ga-68 I. Inorganic substrate. J Nucl Med 20:1075–1079

    PubMed  CAS  Google Scholar 

  • Neirinckx RD, Davis MA (1980) Potential column chromatography generators for ionic Ga-68 II. Organic ion exchangers as chromatographic supports. J Nucl Med 21:81–83

    PubMed  CAS  Google Scholar 

  • Neirinckx RD, Davis MA (1981a) Generator for Gallium-68 and compositions obtained therefrom. United State Patent 4,264,468

    Google Scholar 

  • Neirinckx RD, Davis MA (1981b) Generator for ionic Gallium-68 based on column chromatography. United State Patent 4,288,424

    Google Scholar 

  • Neirinckx RD, Layne WW, Sawan SP et al (1982) Development of an ionic 68Ge/68Ga generator 3. Chelate resins as chromatographic substrates for germanium. Int J Appl Radiat Isot 33:259–266

    Article  CAS  Google Scholar 

  • Pao PJ, Silvester DJ, Waters SL (1981) A new method for the preparation of 68Ga generators following proton bombardment of Gallium oxide targets. J Radioanal Chem 64:267–272

    Article  Google Scholar 

  • Pawlak D, Wojdowska W, Mikolajeczak R (2011) Method for post-elution concentration and acidity reduction of eluate obtained from SnO2 based 68Ge/68Ga generator. Abstracts of poster presentations (chemistry). World J Nucl Med 10:78

    Google Scholar 

  • Rösch F, Filosofov DV, Zhernosekov KP et al (2008) Method and device for isolating a chemically and radiochemically cleaned 68Ga-radionuclide and for marking a marking precursor with the 68Ga radionuclide. United States Patent Application Publication US2008/0277350 A1

    Google Scholar 

  • Schuhmacher J, Maier-Borst W (1981) A new 68Ge/68Ga radioisotope generator system for production of 68Ga in dilute HCl. Int J Appl Radiat Isot 32:31–36

    Article  CAS  Google Scholar 

  • Velikyan I, Beyer GJ, Langström B (2004a) Microwave-supported preparation of 68Ga bioconjugates with high specific radioactivity. Bioconjugate Chem 15:554–560

    Article  CAS  Google Scholar 

  • Velikyan I, Langström B, Beyer GJ (2004b) Method of obtaining gallium-68 and use thereof and device for carrying out said method, WIPO (World Intellectual Property Organization), WO 2004/089517

    Google Scholar 

  • Waters SL, Horlock PL, Kensett MJ (1983) The application of hydrous Tin(IV)Oxide in radiochemical separations and, in particular, for the 68Ge/68Ga and 82Sr/82Rb generator systems. Int J Appl Radiat Isot 34:1023

    Article  CAS  Google Scholar 

  • Zhernosekov KP, Filosofov DV, Baum RP et al (2007) Processing of generator-produced 68Ga for medical application. J Nucl Med 48:1741–1748

    Article  PubMed  CAS  Google Scholar 

  • Zoller F, Riss PJ, Montforts FP, Rösch F (2010) Efficient post-processing of aqueous generator eluates facilitates 68Ga-labelling under anhydrous conditions. Radiochim Acta 98:157–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Australian Nuclear Science and Technology Organisation (ANSTO) for financial support for the Radionuclide Development Project (RRI-0168, including the Ga-68 generator). The author also acknowledges Michael Izard for his electronic installation, Hien Do for her valuable review, Paula Berghofer for English polishing, and Elisabeth Oehlke and Jackson Tim for generator elution and 68Ga-radiolabeling evaluation. Pellegrini Paul and Myint Zaw are acknowledged for test elution of the first generator prototype. David Joel and Theresa Cao are acknowledged for SEM and ICP-OES analysis. William Townsend and Gerard Breen are acknowledged for generator packaging approval and engineering service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van So Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le, V.S. (2013). 68Ga Generator Integrated System: Elution–Purification–Concentration Integration. In: Baum, R., Rösch, F. (eds) Theranostics, Gallium-68, and Other Radionuclides. Recent Results in Cancer Research, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27994-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27994-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27993-5

  • Online ISBN: 978-3-642-27994-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics